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Abstract In this paper, a new method for extracting the
system phase from the bispectrum of the system output has
been proposed. This is based on the complete bispectral data
computed in the frequency domain and modified group delay.
The frequency domain bispectrum computation improves the
frequency resolution and the modified group delay reduces
the variance preserving the frequency resolution. The use of
full bispectral data also reduces the variance as it is used for
averaging. For the proposed method at a signal to noise ratio
of 5dB, the reduction in root mean square error is in the range
of 1.5–7 times over the other methods considered.
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1 Introduction

Bispectrum, the Fourier transform of the Triple Correlation
Sequence (TCS) enables estimation of the deviation from
the Gaussian behavior of a process, identification of a mixed
phase system from its output and characterization of the
non-linear properties of the mechanism that generates the
process [1,3,9]. These applications are due to the fact that
the bispectrum provides information not only about the spec-
tral magnitude but also about the complete spectral phase of
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the signal or system. On the other hand, the power spec-
trum has only information about the magnitude and provides
that of the phase completely, only when the signal or sys-
tem corresponds to a minimum phase. The complete phase
information available in bispectrum is useful in applications
like, recovery of reflection series in seismology [11], channel
equalization in data communication [12], in nondestructive
evaluation using ultrasonic methods [16] by deconvolving
the defect impulse response from that of the measurement
system in the presence of Gaussian noise due to characteris-
tics of measuring instruments and propagation paths, and in
signal or image reconstruction only from phase [8,13].

In the bispectrum, though complete information is avail-
able, the system phase or wavelet phase has to be extracted
from the bispectral phase and for this purpose many meth-
ods have been proposed [1,4,6–8]. Among these, a class of
algorithms for phase recovery from partial (single slice) or
complete bispectrum phase (all slices), which do not require
phase unwrapping and solution of a system of equations, have
been studied [7]. It has been observed that for high signal to
noise ratio (SNR), their performance is similar. However at
low SNR, the performance of the algorithms which use only
the partial bispectrum is inferior to those based on complete
bispectral phase information. In this direction, for phase esti-
mation, use of many selected bispectral slices for averaging
has been proposed [20]. This method though has the advan-
tage of utilizing the a priori information for slice selection,
since the averaging is done in the phase domain, it may result
in the necessity of phase unwrapping and removal of linear
phase component. Further, the selection of slices may result
in instability. The present concern is about the method in
which a relation between partial derivative of the bispec-
tral phase and the system phase group delay (PGD) has been
established and the system phase is obtained from the system
group delay using the direct relation between them [6,7].
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In spectral estimation, for achieving a good estimate of
the spectrum, the group delay function has been modified
[10]. In conventional periodogram spectral estimation, the
data is segmented, windowed and their magnitude spectra
are averaged and here the reduction in variance is at the cost
of the frequency resolution due to the effect of window (seg-
mentation). Basically, the variance of a spectral estimate is
due to input noise driving a system, or associated noise with
the signal, or data truncation effects. Any of these three or
their combination, results in zeros close to the unit circle in
the Z-plane and the fine structure or the variance in spectrum
is due to these zeros. In the averaged windowed periodogram,
the effect of these zeros is reduced as they are pulled towards
the origin due to windowing. However, in addition to these
zeros, the system or signal roots are also pulled inside and
this leads to poor frequency resolution. But, the modified
group delay removes the effect of the zeros which are close
to the unit circle, without disturbing the system or signal
roots and hence reduces the variance without compromising
on frequency resolution. This desired feature of the modi-
fied group delay has been exploited for the phase estimation
[17] using a single bispectral slice derived from the TCS.
The modified group delay basically removes the truncation
effects of the TCS (Gibbs ripple) without applying any com-
mon bispectral time domain window function. This reduces
the Gibbs ripple preserving the frequency resolution of the
rectangular window.

The use of partial bispectral data does not exploit full
potential of the bispectrum in the estimation of the phase. The
use of complete bispectral information enables averaging and
hence effectively reduces the variance even when the signal
to noise ratio is low. For the phase estimation based on group
delay, full bispectral data has been used and improved per-
formance even at low signal to noise ratio has been reported
[2].

In all the above methods mentioned, the bispectrum has
been computed from TCS and hence the maximum number
of TCS lags used limits its frequency resolution. The win-
dowing only further reduces the effective number of lags
and hence the frequency resolution of the rectangular win-
dow. The modified group delay preserves only the frequency
resolution corresponding to the number of considered TCS
lags as no smoothing window is used for the TCS. Hence
the computation of the bispectrum in the frequency domain
which uses all possible lags for the given data length, sig-
nificantly improves the frequency resolution or bias. Further,
use of complete bispectral data and application of modified
group delay very effectively reduce the variance even in the
presence noise of Gaussian or any symmetric distribution,
preserving the frequency resolution of a rectangular window
used for the input signal.

In this paper, a new method for estimating the system
phase from its output based on the modified group delay

and the complete bispectrum data computed in the frequency
domain has been proposed. The use of bispectral phase com-
puted in frequency domain and the modified system group
delay derived from it, not only improve the frequency
resolution of the system phase estimate but also its variance.
The frequency resolution is due to significantly more number
of lags of the triple correlation being considered and also the
removal of Gibbs ripple effect without using any smoothing
window by the modified group delay. Further these reduce the
variance as the modified group delay removes the zeros which
are close to the unit circle which results in the undesired fine
structure (variance) in the phase estimate and the full bispec-
tral slices enable averaging over them. For the same reason,
the proposed method has increased immunity to the associ-
ated noise (as noise manifests as increased variance). It has
been found that in terms of root mean square error, the phase
estimated by this approach is significantly superior even in
the presence of noise to those obtained by the other methods
based on the group delay derived from the bispectrum.

2 Group delay functions

2.1 Original Group delay function

If H(ω) = |H(ω)| ejφ(ω) is a minimum phase system, then
its magnitude and phase can be expressed as

ln |H(ω)| =
∞∑

n=0

c(n) cos(ω n) (1a)

and

φ(ω) = −
∞∑

n=0

c(n) sin(ω n) (1b)

where c(n) is the cepstral coefficient sequence and the mag-
nitude and phase are related through this cepstral coefficient
sequence. The group delay function, the negative derivative
of the phase, is given by

τp(ω) = −dφ(ω)

dω
=

∞∑

n=0

n c(n) cos(ω n) (1c)

Given the system group delay, the system phase is uniquely
computed from Eq. (1b).

But if H(ω) is a mixed phase system, then the magnitude
and phase cannot be expressed in terms of the same cepstral
coefficients:

ln |H(ω)| =
∞∑

n=0

p(n) cos(ω n) (2a)
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and

φ(ω) = −
∞∑

n=0

q(n) sin(ω n) (2b)

where p(n) and q(n) are cepstral coefficient sequences of
the minimum phase equivalent signals derived from spectral
magnitude and phase, respectively. The corresponding group
delay functions are

τm(ω) =
∞∑

n=0

n p(n) cos(ω n) (3)

and

τp(ω) =
∞∑

n=0

n q(n) cos(ω n) (4)

τm(ω) and τp(ω)are known as magnitude group delay (MGD)
and the phase group delay functions, respectively.

From the system PGD τp(w), the phase is uniquely defined
using Eq. (2b) and there is no assumption of the values of the
phaseφ (ω ) at 0 andπ and there is no necessity of computing
separately φ (ω ) at any particular value of ω. For minimum
phase signals, p(n) = q(n) = c(n), τm(w) = τp(w); for
maximum phase signals, p(n) = − q(n),τm(ω) = − τp(ω)

and for mixed phase signals, p(n) �= q(n), τm(ω) �= τp(ω)

[8].
The significant values of MGD for a real pole are close

to the origin and for a second order pole, are around the res-
onance frequency. The MGD for the zeros is same as those
of poles but of opposite in sign. The MGD for a real and
a complex pole is positive, but for a real and complex zero
is negative. If [τm (ejω)]+ and [τm

(
ejω

)
]− are the positive

and negative parts of the MGD respectively, then the cepstral
coefficients for the pole part, p+(n) and for the zero part,
p−(n) are [15]

[
τm (e

jω)
] + = C +

∞∑

n = 1

n p+ (n) cos(ω n)

[
τm (e

jω)
] − = C +

∞∑

n = 1

n p− (n) cos(ω n)

C is the average value that does not contribute to the shape of
the spectrum. Cepstrally smooth spectra for poles and zeros
can be obtained separately by considering only the first few
cepstral coefficients in p+(n) and p−(n).

2.2 Modified magnitude group delay (GDM)

If y(n) is a signal generated by an all-pole system, driven by a
white noise and further, if its spectrum Y (ω)= N (ω)

/
D(ω),

then D(ω) corresponds to the system or sinusoids and N (ω)
to the excitation or the associated noise. For this case, the
MGD is

τm(ω) = τm N (ω)− τm D(ω)

τm N (ω) and τm D(ω) are the MGDs for N (ω) and D(ω),
respectively. Also, τm(ω) is given by

τm(ω) = Ym R(ω)Xm R(ω)+ Ym I (ω)Xm I (ω)

|Y (ω)|2 (5)

Ym(ω) = FT [ym(n)], Xm(ω) = FT [xm(n)], xm(n) =
nym(n); ym(n) is the minimum phase equivalent of y(n).
Also,

τm(ω) = αN (ω)

|N (ω)|2 − αD(ω)

|D(ω)|2 (6)

αN (ω) and αD(ω) are the numerator of the above Eqn. (5)
for τm N (ω), and τm D(ω) respectively. The τm N (ω)will have
large amplitudes spikes due to very small values of |N (ω)|2
near the zeros which are close to unit circle and this is not so
with τm D(ω), as the roots of D(ω) are well within the unit
circle. Hence, in τm(ω), the effect of excitation or the associ-
ated noise masks the system or the signal component, which
is assumed to be an all-pole one. The effect of these zeros
could be reduced by multiplyingτm(ω) by |N (ω)|2. Also, as
the envelope of |N (ω)|2 is nearly flat, the significant features
of τm D(ω) continue to exist, with the |N (ω)|2 fluctuations
superimposed on it. Hence, the modified magnitude group
delay (GDM) τmo(ω)is,

τmo(ω) = τm(ω) |N (ω)|2 (7)

The estimate of |N (ω)|2is given by
∣∣∣Ñ (ω)

∣∣∣
2 = |Y (ω)|2

/

∣∣Ȳ (ω)
∣∣2

,
∣∣Ȳ (ω)

∣∣2
is the cepstrally smoothed power spectrum

obtained by considering only the initial few coefficients of
the cepstral sequence.

3 Relation between system phase and bispectrum phase

3.1 The bispectrum

The bispectrum of a process y(k), generated by a system
H(v) driven by a zero mean non-Gaussian noise w(k)with
E [w(k)] = β, is given by [1,3,5,9]

B(ω, v) =
∞∑

m=−∞

∞∑

n=−∞
R(m, n) e−j (ωm+v n) (8)

R(m, n) is the TCS and is given by

R(m, n) = E [y(k)y(k + m)y(k + n)] (9)

Also,

B(ω, v) = Bs(ω, v)Bw(ω, v) (10)

123



264 SIViP (2008) 2:261–274

Bs(ω, v) and Bw(ω, v) are the bispectra of the system H(v)
and of the input w(k), respectively.

B(ω, v) = |B(ω, v)| ejψ(ω,v)

Since w(k) is a white noise sequence, its bispectral magni-
tude |Bw(ω , v)| = β and bispectral phase ψw(ω , ν) = 0.
Hence,

|B(ω, v)| = β | Bs(ω, v) | (11a)

ψ(ω, v) = ψs(ω, v) (11b)

Since | Bs(ω, v) | = |H(ω)| · |H(v)| · |H(ω + v)|,
|B(ω, v) | = β · |H(ω)| · |H(v)| · |H(ω + v)| (12a)

For ω = 0, Eq. (12a) becomes

|H(v)|2 = B(0, v)

β |H(0)| , |H(0)| �= 0 (12b)

ψs(ω, v) = φ (ω)+ φ (v)− φ (ω + v) (12c)

φ(v) is the phase of the system H(v) and H(v) =
|H(v)| ejφ(v)

3.2 For a single bispectral phase slice data

The system bispectral phase ψs(ω, v) can be obtained from
a single slice ofψ(ω, v), the bispectral phase of the output of
the system [4]. The partial derivative ofψ(ω, v)with respect
to ‘ω’ is given by

∂ψ(ω, v)

∂ω
= ∂φ(ω)

∂ω
− ∂φ(ω + v)

∂ω
(13)

at ω = 0,

∂ψ(ω, v)

∂ω

∣∣∣∣
ω=0

= ∂φ(ω)

∂ω

∣∣∣∣
ω=0

− ∂φ(ω + v)

∂v

∣∣∣∣
ω=0

(14)

since,

∂φ(ω + v)

∂ω

∣∣∣∣
ω=0

= ∂φ(ω + v)

∂v

∣∣∣∣
ω=0

For any given phase function θ(ξ), the PGD τp(ξ) is the
negative derivative of phase with respect to ‘ξ ’ and is given
by

τp (ξ) = −dθ(ξ)

dξ

Hence, Eq (14) can be written as τpω(0, v) = τp(0)− τp(v)

or, τp(v) = −[τpω(0, v)− τp(0)], where, τpω(ω, v)

= −∂ψ(ω, v)
∂ω

τp(0) is the value of τp(ω) at ω = 0 and hence it is constant
with respect to ‘ v ’. Given τpω(0, v), the system group delay
τp(v) can be obtained by subtracting τp(0) from τpω(0, v)
and further changing the sign. The mean value of τpω (0, ω)
corresponds to the linear phase component in the phase and it

has to be removed to get the desired phase. Once the PGD of
the system is estimated, the system phase is uniquely defined
and no assumptions regarding the values of φ (v) at v = 0
and π are required.

3.3 By using complete bispectral phase

Holambe has modified the method of deriving the system
group delay from single slice of bispectral phase for utiliz-
ing the full bispectral phase data [2]. This is advantageous
since it provides an accurate estimate of the system group
delay by reducing its variance and also with better immunity
to the associated noise if any.

The partial derivative of ψ(ω, v) with respect to ‘ω’ is
given by (Eq. (13)),

∂ψ(ω, v)

∂ω
= ∂φ(ω)

∂ω
− ∂φ(ω + v)

∂ω

Integrating on both sides with respect to v, we get

π∫

−π

∂ψ(ω, v)

∂ω
∂v =

π∫

−π

∂φ(ω)

∂ω
∂v −

π∫

−π

∂φ(ω + v)

∂ω
∂v

Since the first integral on the right-hand side is indepen-
dent of v,

π∫

−π

∂ψ(ω, v)

∂ω
∂v = 2π

[
∂φ(ω)

∂ω

]
−

π∫

−π

∂φ(ω + v)

∂ω
∂v

(15a)

τpω(ω) = 1

2π

π∫

−π
τpω(ω, v)dv + 1

2π

π∫

−π
τpω(ω + v)dv

(15b)

In τpω(ω), τpω(ω + v) and τpω(ω, v); the differentiation
is with respect to ω. The linear phase does not contribute to
the bispectral phase, since for the linear phase corresponding
to a delay t0,

ψs(ω, v) = φ(ω)+ φ(v)− φ(ω + v)

= −ω t0 − v t0 − {−(ω + v)t0} = 0

Since the system phase φ (ω) does not contain any linear
phase and τp(ω) is periodic for all values of ω, the second
term in the R.H.S of Eq. (15b) which represents the average
value of the group delay is zero. Therefore,

τpω(ω) = 1

2π

π∫

−π
τpω(ω, v) dv

or,

∂φ(ω)

∂ω
= 1

2π

π∫

−π

∂ψ(ω, v)

∂ω
∂v (16)
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The discrete version of the above relation (dropping ω in
the subscript for simplicity) is

τp(ω) = − 1

L

L−1∑

v=0

T (ω, v) (17)

T (ω, v) = ∂ψ(ω,v)
∂ω

, L : Number of slices which is same
as the DFT size.

4 Improved phase estimation by bispectrum
and modified group delay

In the phase estimation by GD approach, the frequency
resolution and hence the variance are decided by the type
of the window applied to the TCS and the number of data
segments considered in the ensemble. This is so since the
window reduces the effective lag length and sharpness of
truncation (reduction in sidelobe level for non rectangular
window). However here, the reduction in variance is at the
cost of frequency resolution for a given lag length.

To improve the frequency resolution it is necessary to con-
sider as many lags as possible for a given data segment length.
This motivates the bispectrum to be computed in the fre-
quency domain where all the possible lags are directly avail-
able. However, this results in an increased variance. This is
due to the fact that the variances for higher lags are rela-
tively more than those for lower lags. In order to preserve
the frequency resolution and also to reduce the variance of
the bispectrum derived in the frequency domain, the modified
group delay approach is an appropriate one. In the approaches
which use TCS, the variance is reduced due to reduction in
frequency resolution resulting from limited number of TCS
lags. But still the estimate will suffer from variance due to
abrupt truncation, the Gibbs ripple effect. The use of any
smooth window function in an attempt to reduce the vari-
ance due to Gibbs ripple will further reduce the frequency
resolution, for a given length of data. In the new approach,
the total variance effect both due to higher frequency resolu-
tion and the Gibbs ripple (due to data segmentation) is taken
care of by the modified group delay. Further, the use of full
bispectral data instead of a single slice, improves not only the
variance reduction but also the robustness of the estimation
to the associated noise.

For a good estimation of the bispectrum, among many
bispectral windows compared to the rectangular window,
specifically the optimal window reduces the number of seg-
ments required for averaging. Such a bispectral estimate has
good frequency resolution and reduced variance, as the win-
dow is derived by minimizing the mean square error. The
optimal window has the best possible smoothness to reduce
the variance and the best possible flatness to provide impro-
ved frequency resolution [14].

For applying the modification for the GD, the estimated
system PGD from the partial derivative of the complete
bispectral phase is treated as MGD. The equivalent mag-
nitude spectrum derived from this MGD corresponds to the
positive part of the PGD, i.e., to the poles and maximum
phase zeros of the system. However, the modification for
the GD effectively removes the negative part of the PGD.
That is, the information about the minimum phase zeros is
lost. To get an improved estimate of the GD correspond-
ing to minimum phase zeros, the PGD is inverted (the sign
of the PGD is changed) and the modification for the GD is
applied. From this, the negative part of the PGD is obtained.
The improved complete PGD estimate is obtained by sub-
tracting the improved PGD for the minimum phase zeros
from the improved PGD for the poles and maximum phase
zeros. Any discontinuity in the estimate of the PGD can be
smoothed by considering only the first few cepstral coeffi-
cients of the improved complete PGD. From this improved
complete PGD, the phase is determined as they are directly
related.

It is of the opinion that the magnitude estimate will be of
better accuracy than the phase as even small errors in it may
not be tolerable. In view of this, the phase correction can be
made to the above PGD derived, using the MGD. For this, the
regions of MGD corresponding to PGD are identified and the
MGD values with suitable sign modifications are replaced in
the PGD. This is explained in detail below.

Let [τm(ω)]+ and [τm(ω)]− represent the positive and
negative parts of τm(ω), respectively. Also let

[
τp(ω)

]+ and[
τp(ω)

]−, be the positive and negative parts of τp(ω), respec-
tively. The errors in estimating the phase by nonparametric
approach affect the location of both poles and zeros. For a
physically realizable system, all the poles must be of mini-
mum phase and the poles correspond to the positive portion
of the MGD. The MGD will contain complete information
about the poles. In the PGD, the correction for the poles
[18,19] is done as

[τp(ω)]+ = [τm(ω)]+ if τm(ω ) > 0

However, phase correction for zeros requires the informa-
tion about their locations with respect to unit circle whether
they are inside (minimum phase) or outside (maximum
phase). The PGD provides this information, as the PGD
is positive for a maximum phase zero and negative for a
minimum phase zero. For a minimum phase zero, the phase
correction is achieved by

[τp(ω)]− = [τm(ω)]− if τm(ω) < 0 and τp(ω) < 0

For a maximum phase zero, the positive part of PGD (other
than that for poles) is replaced with the corresponding nega-
tive part of MGD with change of sign.
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Let

�(ω) = [τp(ω)]+ − [τm(ω)]+.
Then

[τp(ω)]+ = −[τm(ω)]− if τm(ω) < 0 and�(ω) > 0

Hence the corrected PGD is

τpc(ω) = [τp(ω)]+ + [τp(ω)]−

For the corrected PGD, τpc(ω), q1(k) = I DFT [τpc(ω)],

q (k) =
⎧
⎨

⎩

q1(k), k = 0, L/2
2q1(k)/k, k = 1, 2, . . . , L/2 − 1
0, k = L/2 + 1, . . . , L − 1

q (k) : Cepstral coefficients derived from the corrected
PGD. L is the DFT length. These corrections may result in
some discontinuity in the corrected PGD τpc(ω) and can be
reduced by considering only first few Fourier coefficients
M (M << L)of the PGD and the smoothed corrected PGD
τ̃pc (ejω) is

τ̃pc (e
jω) =

M∑

k = 1

k q (k) cos(ω k) (18)

Then, the system phase is

φ̂ (ejω) = −
M∑

k = 1

q (k) sin(ω k) (19)

The number of cepstral coefficients used should be suf-
ficient to get only the gross feature of the spectrum as the
cepstral coefficients are the Fourier coefficients of the log
spectrum. As their number increases, the FT of the truncated
cepstrum will be closer to the original spectrum (i.e., which
includes all the cepstral coefficients). If the normalized error
energy En(m) considering only the first q cepstral coeffi-
cients c(k) is

En(m) =
∞∑

k=m+1

c2(k)

/ ∞∑

k=1

c2(k)

then initially En(m) will decrease sharply as m is increased
but after a certain value of m = M , the knee point, the
decrease is not appreciable. This implies that number of ceps-
tral coefficients even lower than Mprovides a good represen-
tation of the spectrum.

In the proposed method, the modifications to the group
delay are applied in the system group delay domain and not in
bispectrum domain. Since the modified group delay removes
the zeros close to unit circle due to associated or driving white
noise, it has built in noise immunity and there is no necessity
to identify the noisy regions in the bispectrum like in some
of the existing methods [20].

4.1 Computational complexity

Based on the algorithm for Frequency Domain, Full Data
GDM method given in the appendix, the computational
requirement in terms of FFTs is examined.

(i) For the bispectrum computation using NS segments,
NS FFTs of length L are required.

(ii) For computing the phase group delay (including phase
correction) 3 FFTs and 2 IFFTs are required.

(iii) To modify the system group delay obtained from the
bispectrum full data, 8 FFTs and 6 IFFTs are required.
Further to get system phase from the system group
delay 1 FFT and 1 IFFT are necessary.

Totally it requires NS plus 12 FFTs and 9 IFFTs for the
algorithm.

For single slice using frequency domain computation of
the bispectrum, same computational load is required. It is
important to note that for using full data the only extra oper-
ation required is averaging and this takes (L − 1) additions
and one division. In this respect, for the improvement in the
performance achieved by using full data, the extra computa-
tional load involved is very meager.

5 Simulation results

The performance of the phase extraction by the proposed
method is illustrated for different systems and is compared
to those of other methods considered. For convenience of
presentation, the different methods considered are labeled as
below:
Bispectrum single slice derived from TCS using optimal window [4] : TSS-OW
Bispectrum single slice derived from TCS and GDM [17] : TSS-GDM
Bispectrum single slice derived in frequency domain with GDM : FSS-GDM
Bispectral full data derived from TCS and GDM : TFD-GDM
Bispectral full data derived in frequency domain and GDM : FFD-GDM

Each system is driven by a zero-mean white noise having
one-sided exponential distribution. Further to see the effect
of associated noise on the performance, Gaussian noise has
been added to the output of the systems. The performance
measures, namely, the sample mean (E[φ(v)]) and the root
mean square error (RMSE)σ , computed for K ensembles are
given by

E[φ(ν)]= 1

K

K∑

i=1

φ i (ν) and σ =
{

1

K

K∑

i=1

[φ i (ν)−φ(ν)]2

}1/2

where φ(v) and φi (v) are the ideal phase (can be computed
from system transfer function as its parameters are assumed
to be known) and its estimate at i th trial. K is the number
of trials used in computing the mean and RMSE and in this
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Table 1 NSSMSE performance comparison for different methods

Example CPM TSS-OW TSS-GDM TFD-GDM FSS-GDM FFD-GDM

H1(z) − 1.9424 1.1837 0.5220 0.5562 0.2536

H1(z) (SNR 5 dB) − 2.8256 1.6347 0.7927 0.9124 0.4205

H2(z) − 3.9248 3.0008 1.6891 2.0516 1.2066

H2(z) (SNR 5 dB) − 5.0000 3.7124 1.9836 2.6162 1.4331

H3(z) − 7.9086 − 5.2737 − 4.2343

H3(z) (SNR 4 dB) − 11.0257 − 8.5170 − 7.5016

H4(z) 1.9358 − − 13.5799 − 5.1207

H4(z) (SNR 10 dB) 62.9206 − − 15.0485 − 8.8382

study, value of K = 50 is used for all examples considered.
Further to quantify the performance, the normalized sum of
the sample mean square error (NSSMSE), expressed as a
percentage, is also used as a performance index. It is given
by

NSSMSE =
∑
ν

σ (ν)2

∑
ν

φ(ν)2
× 100

The NSSMSE values for phase estimation of each sys-
tem by different methods are listed in Table 1. The various
examples that have been considered are:

Example 1: H1(z) = (1 − 0.4z−1)

(1 − 0.64z)(1 + 0.6z−1)

The system H1(z) is an ARMA system with mixed phase
poles. For this system, the bispectrum is estimated by using
number of data segments Ns = 40, segment length Ls = 128
samples and the partial derivative of the bispectral phase is
estimated using a Discrete Fourier Transform (DFT) of length
L = 128 samples. Ns and Ls decide the variance and fre-
quency resolution, respectively. The number of lags used for
computing the TCS is M=N=10, as these provide the neces-
sary frequency resolution and keep the variance at low level.

Example 2: H2(z) = (1 − 0.64z)(1 − 0.6z−1)

(1 + 0.7z−1)(1 + 0.6z−1)

The system H2(z) is an ARMA system with mixed phase
zeros. For this system, Ns = 40, Ls = 128, L = 128 and M
= N =12.

Example 3: H3(z) = (1 − 0.86z)(1 − 0.84z−1)

(1 + 0.96z−1)(1 + 0.8z−1)

The system H3(z) is an ARMA system having mixed phase
zeros, with roots close to the unit circle. For this system,
Ns = 40, Ls = 256, L = 256 and M = N =11. In this case,
a larger DFT length is required to resolve the phase curve as
the system has roots close to unit circle.

Example 4: H4(z) =
1

(1 − 2.7377z−1 + 3.7476z−2 − 2.6293z−3 + 0.9224z−4)

The system H4(z) is an AR system with minimum phase
complex conjugate pairs of poles. For this system, Ns =
48, Ls = 256, L = 256 and M = N =13. Since, the system
has complex conjugate pairs of poles, larger values of Ns

and Ls are required to reduce the variance and to resolve the
phase curve.

The mean and RMSE of the phase estimates of systems
H1(z) and H2(z) using different methods are shown in Figs. 1
and 2 respectively. The mean plot obtained by TSS-OW devi-
ates from the ideal phase curve more than that by TSS-GDM
and TFD-GDM (Figs. 1(a–c), 2(a–c)). This is due to the fact
that better frequency resolution is achieved when modified
group delay is used to reduce the variance, instead of the
optimal window. In the case of FSS-GDM and FFD-GDM,
there is significant match between the mean and the true
phase as compared to the time domain methods (Figs. 1d, e
and 2d, e), owing to the increased number of lags offered by
the computation of the bispectrum in the frequency domain.
The RMSE for TSS-OW and for TSS-GDM are of com-
parable magnitude (Figs. 1a, b and 2a, b). However, the
RMSE by TFD-GDM is lower than those by TSS-OW and
TSS-GDM (Figs. 1c, 2c) because of the additional variance
reduction obtained by use of full bispectrum data. For the
same reason, the RMSE values by FFD-GDM are lower
than that by FSS-GDM (Figs. 1(d, e), 2(d, e)). For the sys-
temH1(z), the NSSMSE by the proposed method is only 0.13
times of that by TSS-OW. For systemH2(z), the NSSMSE
by the proposed method is about 0.3 times that by TSS-OW
(Table 1).

Figure 3 and 4 represent the mean and RMSE of the phase
estimates of systems H1(z) and H2(z) when their outputs
are corrupted by Gaussian noise. The performance of phase
estimation methods using bispectrum single slice deterio-
rates in the presence of noise, leading to high RMSE values
(Figs. 3a, b, d and 4a, b, d). The estimation methods that
use full bispectral data are less sensitive to noise than
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Fig. 1 Phase estimation for
system H1(z) by a TSS-OW,
b TSS-GDM, c TFD-GDM,
d FSS-GDM, e FFD-GDM:
dashedline mean, solidline
true, dottedline RMSE

those based on single bispectrum slice, yielding lower error
(Figs. 3(c, e), 4(c, e)). For an SNR of 5dB, the NSSMSE of
the phase estimate of system H1(z) by TSS-OW is about 7
times more than that by the proposed method. The improve-
ment factor by the proposed method over TSS-OW, for
system H2(z) with SNR = 5 dB is 3.5 (Table 1).

For the system H3(z), which has roots close to unit cir-
cle (Example 3), phase estimation by FFD-GDM has been
compared with those by TSS-OW and TFD-GDM. The mean
phase by FFD-GDM (Fig. 5c) matches the ideal phase to a
greater extent than that by TSS-OW (Fig. 5a) and TFD-GDM
(Fig. 5b). The NSSMSE of the phase estimate by FFD-GDM

is 1/2 of that by TSS-OW. In presence of noise, the per-
formance of FFD-GDM (Fig. 6c) and TFD-GDM (Fig. 6b)
is better than that of TSS-OW (Fig. 6a). The improvement
factor by the proposed method over TSS-OW for an SNR
of 4 dB is 1.5 (Table 1), which is less compared to those for
Examples 1 and 2. This is due to closer proximity of the roots
to the unit circle.

The proposed method has been compared with several
other bispectrum based methods in the previous examples.
Since the system H4(z) is a minimum phase system, its phase
can be estimated by the conventional periodogram method
(CPM) also. Hence phase estimation by the bispectrum based
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Fig. 2 Phase estimation for
system H2(z) by a TSS-OW,
b TSS-GDM, c TFD-GDM,
d FSS-GDM, e FFD-GDM:
dashedline mean, solidline
true phase, dottedline RMSE

methods TFD-GDM (Fig. 7b) and FFD-GDM (Fig. 7c) are
compared with that obtained by CPM (Fig. 7a). For this sys-
tem, the performance of TFD-GDM is much poorer than
CPM. This can be attributed to the reduced frequency
resolution of TFD-GDM due to limited number of lags which
is not so with the CPM. This is also indicated by the mean
plot as it is unable to resolve the two peaks (the absence of
kink) (Fig. 7a, b). The FFD-GDM has a better performance
than that of TFD-GDM both in terms of RMSE and mean.
But its performance is inferior to that of CPM (Fig. 7a, c)
and this may be due to additional averaging involved, which
increases the bias. In presence of noise with an SNR of 10dB,
the proposed method performs better than CPM by a fac-
tor of 7! Also, it is almost 1.7 times better than TFD-GDM

(Table 1). Although the conventional periodogram method
is efficient for phase estimation of minimum phase systems
in the absence of noise; its performance significantly dete-
riorates in the presence of noise (Fig. 8a). Phase estimation
methods using the bispectrum provide better noise rejection
as compared to the conventional method (Fig. 8b, c). Among
the bispectrum-based methods, the proposed method yields
the best results.

These results substantiate the superior performance of the
proposed method, even in the presence of noise and with
the system roots close to the unit circle (Example 3). This
method is also significantly better than other methods for
phase estimation of minimum phase systems in presence of
noise (Example 4).
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Fig. 3 Phase estimation for
system H1(z) (SNR = 5dB)
by a TSS-OW, b TSS-GDM,
c TFD-GDM, d FSS-GDM,
e FFD-GDM: dashedline
mean, solidline true,
dottedline RMSE

6 Conclusions

A new method for extracting the system phase from the
bispectrum of the system output, using modified group
delay, was proposed. In this method, the bispectrum was
computed in the frequency domain and full bispectral data
was used. Computing bispectrum in frequency domain imp-
roves frequency resolution, but with increased variance. The
modified magnitude group delay, due to removal of zeros
close to the unit circle, and the use of full bispectral data, as
it facilitates averaging, significantly contribute to the reduc-
tion in variance, without affecting the frequency resolution.
For the same reason, they significantly improve the immunity

of the estimate to noise. Thus it does not require any specific
considerations for noisy regions in the bispectrum. It has been
observed that the proposed method yields significantly better
results than by the other methods, even for low SNRs and for
roots close to the unit circle, as the factor of improvement
is in the range of 1.5–7. Also, for the phase estimation of
minimum phase systems in presence of noise, it is 7 times
better than the conventional periodogram method.

Appendix

The algorithm for the proposed method is given as
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Fig. 4 Phase estimation for
system H2(z) (SNR=5dB), by
a TSS-OW, b TSS-GDM,
c TFD-GDM, d FSS-GDM,
e FFD-GDM: dashedline
mean, solidline true ,
dottedline RMSE

1 Compute average bispectrum, B(ω, ν), from available
data.

(i) Segment the data y(n) into Ns segments of Ls

samples each.

Let

y(l)j = y( j + (l − 1)Ls)

where l = 1........Ns , j = 1, ..........Ls

(ii) Generate

B(ω, ν) = 1

Ns

Ns∑

l=1

Y l(ω)Y l(ν)Y l(ω + ν)

where Y l(ω) is the DFT of yl(n).

2 Compute the bispectral phase ψ(l1, l2).
3 From the bispectral phase, compute T (l, u) the nega-

tive bispectral phase derivative (Bispectral PGD) with
respect to l [8].

(i) Generate the all-pass sequence g1(k1, k2)

g1(k1, k2) = IDFT [ejψ(l1,l2)]
(ii) Generate g2(k1, k2), where g2(0, 0) = 0,

g2(k1, k2) = k1g1(k1, k2) for k1 = 0, 1, ...... L
2

and k2 = 0, 1, .....L − 1

g2(k1, k2) = (k1 − L)g1(k1, k2),

for k1 = L/2 + 1, ......L − 1

and k2 = 0, 1, ....L − 1
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Fig. 5 Phase estimation for system H3(z)by a TSS-OW, b TFD-GDM,
c FFD-GDM: dashedline mean, solidline true, dottedline RMSE

(iii) T (l, u) = real [G1(l, u)] real [G2(l, u)]
+imag [G1(l, u)] imag [G2(l, u)] ,

where G1(l1, l2) and G2(l1, l2) are the DFTs of g1

(k1, k2) and g2(k1, k2), respectively.

Fig. 6 Phase estimation for system H3(z) (SNR = 4dB) by a TSS-
OW, b TFD-GDM, c FFD-GDM: dashedline mean, solidline true,
dottedline RMSE

4 Compute the PGD, τp(l).

τp(l) = − 1

L

L−1∑

u=0

T (l, u)
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Fig. 7 Phase estimation for system H4(z) by a CPM, b TFD-GDM,
c FFD-GDM: dashedline mean, solidline true, dottedline RMSE

5 Compute the corrected PGD from MGD.
(i) Calculate the magnitude estimate H(l) using

Eq. (12b).

|H(l)|2 = B(0, l)

β |H(0)|
(ii) Compute the MGD, τm(l) using Eqs. (2a) and (3).

Fig. 8 Phase estimation for system H4(z) (SNR=10dB) by a CPM,
b TFD-GDM, c FFD-GDM: dashedline mean, solidline true,
dottedline RMSE

(iii) Phase correction for poles:
[τp(ω)]+ = [τm(ω)]+, if τm(ω ) > 0.

(iv) Phase correction for minimum phase zeros:
[τp(ω)]−=[τm(ω)]− if τm(ω)<0 and τp(ω)<0.
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(v) Phase correction for maximum phase zeros:

[τp(ω)]+ = −[τm(ω)]−
if τm(ω ) < 0 and �(ω ) > 0,

where, �(ω ) = [τp(ω )]+ − [τm(ω )]+ .
(vi) Compute the corrected PGD as

τpc(ω) = [τp(ω)]+ + [τp(ω)]−
6 Compute the equivalent magnitude Aum(ω) from the cor-

rected PGD.

q1(k) = IDFT [τpc(l)]

Aum(ω) =
L−1∑

n=0

q(k) cos(ωn)

with

q (k) =
⎧
⎨

⎩

q1(k), k = 0, L/2
2q1(k)/k, k = 1, 2, . . . , L/2 − 1
0, k = L/2 + 1, . . . , L − 1

7 Compute smoothed version of Aum(ω), Asm(ω) by con-
sidering only the first few cepstral coefficients.

8 Compute Adm = Aum − Asm .
9 Get the modified group delay (GDM) τmm(ω) by multi-

plying PGD with exp(2Adm(ω)).
10 Compute the equivalent magnitude, Amm from τmm(ω).
11 Compute the scaled equivalent magnitude.

Ams = Amm

G
+ mean (Aum)

where, G = max [Amm − mean(Amm)]
max [Aum − mean(Aum)]

12 Compute GD corresponding to poles and maximum
phase zeros τpp(ω) from this scaled equivalent magni-
tude.

13 Similarly, compute GD corresponding to minimum phase
zeros τpn(ω) from the scaled equivalent magnitude
obtained by reversing original PGD using steps 6–11.

14 Compute τpm(ω) = τpp(ω)− τpn(ω).
15 Compute phase φ(ω) from τpm(ω) using Eqs. (2b) and

(4).
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