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Abstract:
A tuning method is developed for the stabilization of the non-minimum phase second order plus time delay
systems. It is well known that the presence of positive zeros pose fundamental limitations on the achievable
control performance. In the present method, the coefficients of corresponding powers of s, s2 and s3 in the
numerator are equated to α, β and γ times those of the denominator of the closed-loop system. The method gives
three simple linear equations to get the PID parameter. The optimal tuning parameters α, β and γ are estimated
by minimizing the Integral Time weighted Absolute Error (ITAE) for servo problem using fminsearch MATLAB
solver aimed at providing lower maximum sensitivity function and keeping in check with the stability. The
performance under model uncertainty is also analysed considering perturbation in one model parameter at a
time using Kharitonov’s theorem. The closed loop performance of the proposed method is compared with the
methods reported in the literature. It is observed that the proposed method successfully stabilizes and improves
the performance of the uncertain system under consideration. The simulation results of three case studies show
that the proposed method provides enhanced performance for the set-point tracking and disturbance rejection
with improved time domain specifications.
Keywords: PID controller, non-minimum phase system, IMC method, Kharitonov’s theorem
DOI: 10.1515/cppm-2018-0059
Received: October 26, 2018; Revised: February 12, 2019; Accepted: March 4, 2019

1 Introduction

A system is said to be non-minimum phase (NMP) whose transfer function has one of the zeros lying on the
right half of S-plane; which leads the step response in the direction opposite to that of the initial steady state
path. This response is also known as an inverse response in time domain. The modulus of the non-minimum
phase response is greater than that of minimum phase system with the same amplitude response. The phase
angle of any non-minimum phase system is greater than 90 degrees. It is well known that the presence of
zeros pose fundamental limitations on the achievable control performance. Systems with positive zeros are
fundamentally and quantifiably more difficult to control than the systems without zero [1]. The closed loop
response of a SOPTD system with a zero shows a larger overshoot compared to that of the system without
zero. The closed loop performance of the control system is complicated by the presence of a zero.

The method of designing the controller for higher order system is limited in open literature. Therefore, the
higher order models are approximated to First order plus time delay (FOPTD) in most of the cases. However, the
approximate FOPTD model provides a negative time constant on few occasions, in such cases the higher order
models can be approximated to second order plus time delay (SOPTD) instead of FOPTD [2]. The SOPTD model
can capture the dynamics of the higher systems better than the FOPTD models. Furthermore, the controller
settings designed using the SOPTD model provide better closed loop performance than the controller designed
by the FOPTD model [3]. There are many systems, which exhibit the second order plus time delay with positive
zero system like that of the drum boiler [4]. The non-minimum phase systems are sluggish in response because
of their under shoot at the start of the response. Presence of the positive zero complicates the performance of
the dynamics of the control system and limits the maximum bandwidth. Internal stability is one of the main
problems with the NMP system.

Proportional Integral Derivative (PID) controllers are widely used in the automation industry due to their
relative simplicity and the satisfactory performance they provide for a wide range of processes [5]. PID con-
trollers continue to be a very active research field, as they are often poorly tuned in industries and the perfor-
mances obtained can be improved many times by applying a more efficient PID control technology. Although
various control techniques for non - minimum phase systems have been developed, it is no surprise that for a
C. Sankar Rao is the corresponding author.
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few years and even now, the classical PID controllers have been widely used in industry and research applica-
tions. In addition, PID controllers have many important features such as feedback, the ability to remove steady
state offset by integral action, and the future can be anticipated by derivative action [6]. A Simplified Filtered
Smith Predictor has been designed for stable, integrative, and unstable FOPDT models. They demonstrated
that the order and complexity of the Filtered Smith Predictor filter is not necessary to increase in order to deal
with the noise if the primary control unit is properly selected to adjust the set point response [7]. A dead time
compensator algorithm has been reported in literature for dealing the multiple delay SISO systems. Two FIR
filters are used in the algorithm to obtain a required tracking point [8]. Torrico et al. [9] introduce a novel tuning
technique, for which robust loops and noise attenuation can be used simultaneously for stable, unstable and
integrating dead time processes. Compared to more complex controllers, the lower order filters are shown to
meet design requirements and provide better performance.

Methods for the design of PI/PID controllers for stable non-minimum phase systems have been reported
in open literature such as IMC method [10, 11], phase margin and margin method [12], optimization method
[13, 14], etc. The equating coefficient method has been derived for the integrator dead time process [15] and
extended to an unstable First Order plus Time Delay (FOPTD) process [10] and the inverse response systems.
The modified IMC have been developed for the inverse response system [16]. Later on, an IMC and stability
analysis method was presented for the unstable SOPTD model [17]. IMC method has been used for first order
unstable/stable system with zero [18]. To overcome the inherent problem of internal stability, a modified inter-
nal model control technique has been developed to track the set point and load disturbance rejection [19]. An
open loop unstable system has a time delay limitation on system performance that has been addressed by im-
plementing two degree of freedom control structure [20]. A time delay compensators with different structures
has been given for stable, integrating and unstable processes [21]. For the USOPTD non-minimum phase sys-
tem, a modified form of the Smith predictor method has been tested to improve the set point and load rejection
response [22]. Using simulation studies, it is shown that an enhanced IMC-based PID controller can be used to
control non-minimum phase integrating systems effectively [23].

There are several methods available in literature, which can be used to design PI/PID controller for non-
minimum phase FOPTD systems. However, limited methods are available for non-minimum phase SOPTD
process. In this work, we estimate a PID settings for NMP SOPTD. The design procedure of all the above-
mentioned methods is rather complicated. In this work, we present a simple method to find a PID parameter
that solves three simple linear equations. In this work, we present a simple method, which solve three linear
equations to find PID parameter. This method equals the degree of a numerator and denominator of the closed
loop transfer function of servo problem and gets the equations on equating the powers of s, s2, and s3 of the
numerator and the denominator. It is, therefore, possible to obtain the PID parameter by solving these equa-
tions. In order to know the effectiveness of the proposed method, simulation studies are carried out, and the
performance is compared with the reported work.

2 Proposed method

The general form of Second Order Plus Time Delay with Zeros (SOPTDZ) system is given as:

𝐺 =
𝑘𝑝(1 − 𝑝𝑠)𝑒−𝐿𝑠

𝑎𝑠2 + 𝑏𝑠 + 1
(1)

PID controller is considered here. The PID controller equation can be written by the following equation

𝐺𝑐 = 𝑢(𝑠)
𝑒(𝑠) = 𝑘𝑐[1 + 1

𝜏𝐼𝑠
+ 𝜏𝐷𝑠] (2)

where u is manipulated variable and e is error (i. e. y – yr)
The closed loop transfer function relating the output variable (y) and set point (yr) can be given by the

following expression [24]

𝑦
𝑦𝑟

= 𝐺𝐺𝐶
1 + 𝐺𝐺𝐶

(3)

Substituting G and Gc in the above equation and rearranged to get the following equation
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𝑦(𝑠)
𝑦𝑟(𝑠) = (𝑘1𝑠 + 𝑘2 + 𝑘3𝑠2) × (1 − 𝑝𝑠)𝑒(−𝐿𝑠)

𝑠(𝑎𝑠2 + 𝑏𝑠 + 1) + (1 − 𝑝𝑠)(𝑘1𝑠 + 𝑘2 + 𝑘3𝑠2)𝑒−𝐿𝑠 (4)

Where,

𝑘1 = 𝑘𝑐𝑘𝑝 (5)

𝑘2 = 𝑘1
𝜏𝐼

(6)

𝑘3 = 𝑘1𝜏𝐷 (7)

The exponential term (e-Ls) in the numerator is eliminated for further analysis, as it only shifts the corresponding
time axis. The exponential term (e-Ls) in the denominator can be written as

𝑒−𝐿𝑠 = 𝑒−0.5𝐿𝑠

𝑒0.5𝐿𝑠 (8)

𝑦(𝑠)
𝑦𝑟(𝑠) = (𝑘1𝑠 + 𝑘2 + 𝑘3𝑠2) × (1 − 𝑝𝑠)𝑒(0.5𝐿𝑠)

𝑠(𝑎𝑠2 + 𝑏𝑠 + 1)𝑒0.5𝐿𝑠 + (1 − 𝑝𝑠)(𝑘1𝑠 + 𝑘2 + 𝑘3𝑠2)𝑒−0.5𝐿𝑠 (9)

Eq. (9) can be rewritten as

𝑦(𝑠)
𝑦𝑟(𝑠) = (𝑘1𝑠 + 𝑘2 + 𝑘3𝑠2)(1 − 𝑝𝑠)𝑒0.5𝐿𝑠

𝑠(𝑎𝑠2 + 𝑏𝑠 + 1)𝑒0.5𝐿𝑠 + (1 − 𝑝𝑠)(𝑘1𝑠 + 𝑘2 + 𝑘3𝑠2)𝑒−0.5𝐿𝑠 (10)

The following expression can be obtained after expanding the exponential terms e(0.5Ls) and e(−0.5Ls) using the
Taylor series and substituting them in the above equation.

𝑦(𝑠)
𝑦𝑟(𝑠) = (𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1 + 𝑘2)

(𝑏3𝑠3 + 𝑏2𝑠2 + 𝑏1𝑠 + 𝑘2)
(11)

Where,

𝑎3 = −𝑝𝑘3 + 0.5𝑘3𝐿 − 0.5𝑝𝑘1𝐿 + 0.125𝑘1𝐿2 − 0.125𝑝𝑘2𝐿2 + 0.0208𝑘2𝐿3 (12)

𝑏3 = −𝑝𝑘3 − 0.5𝑘3𝐿 + 0.5𝑝𝑘1𝐿 + 0.125𝑘1𝐿2 − 0.125𝑝𝑘2𝐿2 − 0.0208𝑘2𝐿3 + 𝑎 + 0.5𝑏𝐿 + 0.125𝐿2 (13)

𝑎2 = 𝑘3 − 𝑝𝑘1 + 0.5𝑘1𝐿 − 0.5𝑝𝑘2𝐿 + 0.125𝑝𝑘2𝐿2 (14)

𝑏2 = 𝑘3 − 𝑝𝑘1 − 0.5𝑘1𝐿 + 0.5𝑝𝑘2𝐿 + 0.125𝑝𝑘2𝐿2 + 𝑏 + 0.5𝐿 (15)

𝑎1 = 𝑘1 − 𝑝𝑘2 + 0.5𝑘2𝐿 (16)

𝑏1 = 𝑘1 − 𝑝𝑘2 − 0.5𝑘2𝐿 + 1 (17)

Numerator and denominator of eq. (11) are taken into account. The order of the numerator and denominator is
the same, and the presence of the integral action equals the constant term in both the numerator and denomi-
nator. Considering open loop stable systems and equating the coefficient of the corresponding powers of s of
numerator and denominator, with the controllers objective to make y/yr = 1. On equating the powers of s3 of
numerator α times that of the denominator of eq. (11) i.  e.𝑎3 = 𝛼𝑏3
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We get,

- pk3(1 - 𝛼) + 0.5k3L(1 + 𝛼) - 0.5pk1L(1 + 𝛼) + 0.125k1L2(1 - 𝛼) - 0.125pk2L2(1 - 𝛼)
+ 0.0208k2L3(1 + 𝛼) - (a + 0.5bL + 0.125L2)𝛼 = 0

(18)

On equating the powers of s2 of numerator β times the denominator of eq. (11) i. e.𝑎2 = 𝛽𝑏2
we get,

k3(1 - 𝛽) - pk1(1 - 𝛽) + 0.5k1L(1 + 𝛽) - 0.5pk2L(1 + 𝛽) + 0.125pk2L2(1 - 𝛽) - 𝛽(b + 0.5L) = 0 (19)

On equating the powers of s of numerator γ times the denominator of eq. (11) i. e. 𝑎1 = 𝛾𝑏1
we get,

k1(1 - 𝛾) - pk2(1 - 𝛾) + 0.5k2L(1 + 𝛾) - 𝛾 = 0 (20)

Thus kc, τI and τD are calculated from the above equations using the tuning parameter α, β and γ.

3 Robustness analysis

It is essential to carry out the robustness study of any designed controller to take care of model uncertainties.
The sensitivity function should be small at low frequency for a controller to provide a good load rejection. The
sensitivity function can be defined by the following equation

𝑆(𝑠) = 1
1 + 𝐺(𝑠)𝐺𝑐(𝑠) (21)

The complementary sensitivity function can be given as

𝑇(𝑠) = 1 − 𝑆(𝑠) (22)

𝑇(𝑠) = 𝐺(𝑠)𝐺𝑐(𝑠)
1 + 𝐺(𝑠)𝐺𝑐(𝑠) (23)

The set point tracking information of a controller can be obtained from the complementary sensitivity function.
The value of the complementary sensitivity function T(s) should be close to unity. The robustness performance
of the manipulated variable or the controller output is measured by the maximum sensitivity function (Ms)
which is defined as

𝑀𝑠 = max𝜔 ∣𝑆 (𝜔𝑗)∣ = max𝜔 ∣ 1
1 + 𝐺(𝑗𝜔)𝐺𝑐(𝑗𝜔) ∣ (24)

It is recommended to get a small value of Ms value for a good robust controller
The values of α, β and γ are chosen to stabilize the system and provide a better performance. The guideline

for determining α, β and γ values are studied especially for the case of NMP SOPTD model. The optimal tuning
parameters α, β and γ are estimated by minimizing the Integral Time weighted Absolute Error (ITAE) for the
servo problem using the MATLAB fminsearch solver aimed at providing lower maximum sensitivity function
and maintaining stability control. As non-minimum phase systems are highly sensitive to change in controller
settings and tuning parameters, it was observed by simulations that for the following case studies, variance of α
and the ratios α/β, α/γ gave better performance and achieved robustness (lower Ms value for obtained controller
settings) and also stabilized the system. Hence, the selection of tuning parameters was a trade-off for all three
requirements.
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4 Simulation studies

Three examples of non-minimum second order stable system are considered for evaluation of proposed
method. A rigorous simulation studies have been performed to get the optimal tuning parameter. To obtain
the optimum PID settings, the initial PID settings obtained must be adjusted repeatedly using the tuning pa-
rameters such as α, β and γ through computer simulations until the lower Ms index and the required closed
response are achieved. The efficacy of the controller performance is measured in terms of time integral errors,
total variation in manipulated variable and settling time. The closed loop servo and regulatory response are
obtained for all case studies and compared with the reported methods and quantifying in terms of time integral
errors such as Integral of Absolute Error (IAE), Integral of Time weighted Absolute Error (ITAE) and Integral
of Square Error (ISE). The smoothness of functioning of the controller is given in terms of Total Variation (TV).

TV can be defined as 𝑇𝑉 =
𝑁
∑
𝑖=0

𝑢𝑖+1 − 𝑢𝑖where N is the number of data points over the response and u is the

manipulated variable.
Case study-1 (Fermenter)
The transient nonlinear mathematical model of a Fermenter in which the microbial growth is assumed to

follow Monod kinetics is given by the following equation [25, 26].

𝑑𝑋
𝑑𝑡 = (𝜇 − 𝐾𝑑)𝑋 − 𝑋𝑢 (25)

𝑑𝑆
𝑑𝑡 = ( 𝜇

𝑌 − 𝑚)𝑋 − (𝑆 − 𝑆𝑡)𝑢 (26)

𝜇 = 𝜇max𝑆
𝐾𝑚 + 𝑆 (27)

In the above model equations, X is the cell concentration, µ the specific growth rate, m the maintenance, Kd the
decay rate, Y the yield coefficient, u the dilution rate, Km the Monod constant and S the substrate concentration.
The Fermenter model (eqs. (25), (26) and (27)) is linearized around the stable operating point X = 0.3018 g/l and
S = 0.0452 g/l with values µmax = 0.4/h, m = 0, Kd = 0.04/h, Km = 0.05 g/l, Y = 0.4 g/g, u = 0.15/h. The obtained
linear transfer function model is given by the following

X(s)
u(s) =

0.2803(1 − 3.4063𝑠)
3.1638𝑠2 + 5.7382𝑠 + 1

𝑒−0.3𝑠 (28)

For the proposed method, controller settings obtained are kc = 3.1944, τI = 5.7956, τD = 0.4135 by considering α
= 0.1514, β = −5.475α, γ = 1.925α values respectively. The PID settings by IMC method are kc = 2.8019, τI = 5.7382
and τD = 0.5514 and designed by the stability analysis method are kc = 3.1944, τI = 5.7382, and τD = 0.5514. The
performance is evaluated in the closed loop system for a unit step change in the set point and unit change in load
as shown in Figure 1 and Figure 2 respectively. From Figure 1, it can be seen that the closed loop characteristics
such as rise time, settling time are less when compared to the existing methods listed in Table 1. It can also
be observed from both the closed loop responses that the proposed method achieves a smoother undershoot
than the other two methods. The quantification of the controller performance has been carried out in terms of
the time integral errors and enlisted in Table 1. It can be observed from Table 1 that the integral absolute error
and the integral time weighted absolute error are less for the proposed method for both servo and regulatory
problems. The proposed method shows significant improvement in the controller performance by reducing
the ITAE index by 61 % compared to the IMC method. The control actions are given in Figure 3 and Figure 4
for both servo and regulatory problem respectively. It can be seen from Table 1 (TV index) that the proposed
method shows smoother control action for both servo and regulatory problem It is observed from Table 1 that
the TV value for the servo response improved by 51 % and the TV index for regulatory response improved by
97 %. Kharitonov’s theorem is used to determine the regions of stability for the model parameters. It can be
observed from the Table 2 that the proposed controller can stabilize the system for ±253 % of perturbations
in time delay. In the presence of uncertainty in process parameters, the proposed controller provides the best
performance and can stabilize the system for a wider range of variations in model parameters as given in Table
2.
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Figure 1: Closed loop Servo performance of case study-1using the PID settings obtained from the IMC method, the Stabil-
ity Analysis (SA) method and the proposed method.

Figure 2: Regulatory performance of case study-1using the PID settings obtained from IMC method, SA method and pro-
posed method.

Figure 3: Control action obtained from Servo response using controller settings of IMC method, SA method and pro-
posed method. (case-1).
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Figure 4: Control action obtained from Regulatory response using controller settings of IMC method, SA method and
proposed method. (case-1).

Table 1: Error and close loop characteristics of all case studies.

Case studies Design
Method

Servo Problem Regulatory
Problem

TV Rise
Time(s)

Settling
Time(s)

IAE ITAE IAE ITAE Servo Regula-
tory

Case 1
IMC 7.328 26.277 2.631 27.608 163.71 3.7145 1.01 2.16
SA 6.427 17.373 2.418 22.808 197.94 5.9133 1.01 2.16
Present 6.372 16.306 2.398 22.384 131.23 2.987 0.802 1.63

Case 2
IMC 1.036 0.554 0.658 1.121 32.698 1.816 7.17 14.1
SA 1.036 0.554 0.658 1.121 32.698 1.816 4.86 10.3
Present 0.911 0.533 0.651 1.103 26.654 1.748 3.58 8.24

Case 3
IMC 36.880 290.34 3.448 57.035 329.02 11.010 14.7 30.4
SA 36.819 287.66 3.455 56.907 337.163 11.9678 14.5 30.1
Present 36.423 267.67 3.575 57.261 148.81 6.347 11.3 26.7

1 SA: Stability Analysis Method

Table 2: Stability regions for model parameters (Kharitonov’s Theorem).

Case studies Method %L %kp %a1 %a2

Case study 1
IMC ±88 ± 98 ±60 ±44
Proposed ±253 ± 99 ±95 ±47

Case study 2
IMC ±73 ±98 ±48 ±22
Proposed ±390 ±99 ±99 ±62

Case study 3
IMC ±76 ±30 ±77 ±22
Proposed ±155 ±28 ±171 ±21

Case study 2 (Isothermal CSTR)
The following non-linear Van De Vusse isothermal CSTR [13] is considered here. The product B is desired

in following reaction sequence [27, 28]

𝐴 𝑘1−→ 3𝐵 𝑘2−→ 𝐶 (29)

2𝐴 𝑘3−→ 𝐷 (30)

The transient equations for the reactor are given as

dC𝐴
𝑑𝑡 = 𝐹

𝑉 (𝐶𝐴,𝑓 − 𝐶𝐴) − 𝐾1𝐶𝐴 − 𝐾3𝐶2
𝐴 (31)
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dC𝐵
𝑑𝑡 = − 𝐹

𝑉 𝐶𝐵 + 𝐾1𝐶𝐴 − 𝐾2𝐶𝐵 (32)

In the above modelling equations, F is feed flow rate, K1, K2, K3 are the reaction rate constants, CA the
concentration of A in the reactor, CAf the feed concentration of A, CB the concentration of B in reactor and
V the volume of the reactor. The parameters of the CSTR are given as F/V = 0.5714/min, K1 = 0.833/min,
K2 = 1.66/min, K3 = 0.166/min, CAf = 10 gmol/l, CA = 3 gmol/L, CB = 1.1170 gmol/L. The local linearized
transfer function is given by [29]

X(s)
u(s) =

−1.117𝑠 + 3.1472
𝑠2 + 4.6429𝑠 + 5.3821 𝑒−0.1𝑠 (33)

In this case study, the values of the tuning parameters obtained for the proportional integral derivative (PID)
controller are kc = 1.4832, ̈I = 0.8627, ̈D = 0.1723, taking into account the tuning parameters as α = 0.1517, β
= −1.009α, μ = 2.586α. The PID settings obtained by the IMC method are kc = 1.4685, τI = 0.8627, τD = 0.2154
and are based on the stability analysis method: kc = 1.4685, τI = 0.8627, τD = 0.2154. The performance of the
closed loop is evaluated for a unit step change in the set point and unit change in the load as shown in Fig-
ure 5 and Figure 6 respectively. It is evident from Figure 5 and Figure 6 that the proposed method achieves
superior closed loop servo and regulatory responses. Superior closed loop servo and regulatory responses are
achieved by the proposed method. Table 1 shows the closed loop characteristics such as settling time and rise
time, performance criteria such as integral of absolute error (IAE) and integral of time weighted absolute er-
ror (ITAE) for the proposed method, stability analysis method and IMC method. The minimum values of IAE
and ITAE indices proves the stability and efficacy of the proposed method to control the NMP SOPTD system.
The proposed controller gives a rise time of 3.58 seconds and a settling time of 8.24 seconds, which is quite low
when compared to the other two methods. The variation of manipulated variable for the servo and regulatory
system is evaluated and shown in Figure 7 and Figure 8. There is a 22 % of improvement in the TV value than
that of the IMC and stability analysis method for the servo response. Table 2 shows the stability regions for the
model parameters calculated using Kharitnov’s Theorem. It can be observed from the Table 2 that the proposed
controller can stabilize the system for ±390 % of perturbations in time delay. In the presence of uncertainty in
process parameters, the proposed controller provides the best performance and can stabilize the system for a
wider range of variations in model parameters.

Figure 5: Closed loop Servo performance of case study-2using the PID settings obtained from IMC method, SA method
and proposed method.
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Figure 6: Regulatory performance of case study-2 using the PID settings obtained from IMC method, SA method and
proposed method.

Figure 7: Control action obtained from Servo response using controller settings of IMC method, SA method and pro-
posed method. (case-2).

Figure 8: Control action obtained from Regulatory response using controller settings of IMC method, SA method and
proposed method. (case-2).

Case study-3 (Fermenter)
On linearization of equations (eqs. (19–21)) at stable operating point X = 0.379 g/l and S = 0.019 g/l with

values µ = 0.4/h, m = 0.01/h, Kd = 0, Km = 0.05 g/l, Y = 0.4 g/g, u = 0.11/h, the following transfer function
relating cell concentration and dilution rate can be obtained [30, 31].

X(s)
u(s) =

0.0291(1 − 28.7121𝑠)
2.2024𝑠2 + 9.0155𝑠 + 1

𝑒−0.3𝑠 (34)

The controller settings for the present method is found to be kc = 8.4699, τI = 9.0155 and τD = 0.1221 by consider-
ing α = −0.0362, β = 87.78α and γ = 0.0362α. The PID settings for the IMC method are kc = 8.3705, τI = 9.0155 and
τD = 0.2443 and designed by stability analysis method are kc = 8.386, τI = 9.0155 and τD = 0.2443. These set of PID
settings are evaluated on the Fermenter and obtained the servo and regulatory responses by introducing a unit
step change in set point and load. The obtained are shown in Figure 9 and Figure 10. Quantification of the closed
loop performances are carried out in terms of time integral errors. Table 1 shows the comparison of controller
parameters such as settling time and rise time, performance criterion such as integral of absolute error (IAE)
and integral of time weighted absolute error (ITAE) for the proposed method, Stability analysis method and
IMC method. The smoother control action is achieved for both servo and regulatory (Figure 11 and Figure 12)
problems. Compared to the IMC method, the TV value for the servo response improved by 148 % and the TV
values for the regulatory response improved by 73 %. Compared to the stability analysis method, the TV value
for the servo response improved by 126 % and the TV values for the regulatory response improved by 88 %.
From the proposed controller, a settling time and rise time of 26.7 seconds and 11.3 seconds respectively are
observed which are comparably less than the stability analysis and the IMC controller. Kharitonov’s theorem
is used to determine the regions of stability for the model parameters. It can be observed from the Table 2 that
the proposed controller can stabilize the system for ±155 % of perturbations in time delay. In the presence of
uncertainty in process parameters, it is shown that the proposed controller delivers the best performance and
is able to stabilize the system for a wider range of system parameter variations.
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Figure 9: Closed loop Servo performance of case study-3using the PID settings obtained from IMC method, SA method
and proposed method.

Figure 10: Regulatory performance of case study-2 using the PID settings obtained from IMC method, SA method and
proposed method.

Figure 11: Control action obtained from Servo response using controller settings of IMC method, SA method and pro-
posed method. (case-2).
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Figure 12: Control action obtained from Regulatory response using controller settings of IMC method, SA method and
proposed method. (case-2).

5 Conclusions

A tuning method is proposed to design a controller for the non-minimum phase second order plus time delay
systems. Unlike the other methods, the method used in this study is very simple and the tuning techniques are
easy. The proposed method is compared with those methods reported in literature such as IMC and stability
analysis method. From the simulation studies, it is shown that a significant enhancement in the closed loop
performance has been observed in all the case studies compared to the existing methods reported in literature.
The proposed method shows better closed loop response in terms of integral absolute error and the integral
time weighted absolute error. The smoother control action is achieved by the proposed method for both servo
and regulatory problems. It is also observed that the proposed method is capable of stabilizing the system for
a larger range of system parameter variations. The performance improvement of the proposed method over
IMC method and stability analysis method have shown that the proposed controller can be able to control the
non-minimum phase SOPTD systems.

Appendix

A Kharitonov’s Theorem [28]

This theorem gives interval for the coefficient of the characteristic equation for which the system is stable by
determining the stability of vortex polynomial obtained for the boundary range of the coefficients.

The closed loop characteristic equation is given by

𝐺(𝑠) = 1 + 𝐺𝐺𝑐 = 0 (35)

The characteristic equation obtained by applying Taylor’s series expansion for time delay approximation for
the interval system is stated as follows

𝐺(𝑠) = 𝑎0 + 𝑎1𝑠 + 𝑎2𝑠2 + 𝑎3𝑠3 + ...... + 𝑎𝑛𝑠𝑛 (36)

Where, ai ϵ [ail, aiu],
For i = 1,2, … n., ail is the lower limit and aiu is the upper limit,
The characteristic polynomial is said to be stable only if all four khairtonov polynomial are stable. Their

stability is found by applying Routh hurwitz criterion to each equation. The khairtonov’s polynomials are gives
as

𝐺1(𝑠) = 𝑎0𝑙 + 𝑎1𝑙𝑠 + 𝑎2𝑢𝑠2 + 𝑎3𝑢𝑠3 + ...... (37)

𝐺2(𝑠) = 𝑎0𝑙 + 𝑎1𝑢𝑠 + 𝑎2𝑢𝑠2 + 𝑎3𝑙𝑠3 + ...... (38)

𝐺3(𝑠) = 𝑎0𝑢 + 𝑎1𝑙𝑠 + 𝑎2𝑙𝑠2 + 𝑎3𝑢𝑠3 + ...... (39)

𝐺4(𝑠) = 𝑎0𝑢 + 𝑎1𝑢𝑠 + 𝑎2𝑙𝑠2 + 𝑎3𝑙𝑠3 + ...... (40)

The coefficient polynomial (36) is stable if and only if all the four vertex polynomials (37–38) are stable. Initial
values of kp, a1 and a2 are fixed and perturbation in time delay L is substituted with limits (L – ΔL) < L < (L + ΔL)
in coefficients and Kharitonov’s polynomials are obtained. These polynomial’s stability is checked with Routh–
Hurwitz method. In similar procedure, stability regions for kp, a1 and a2 are obtained by varying objective
parameter and keeping other parameters constant.

11
Authenticated | csrao@nitk.edu.in author's copy

Download Date | 4/14/19 7:10 AM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Patil and Sankar Rao DE GRUYTER

Nomenclature

Greek alphabets:
α Coefficient for s3

β Coefficient for s2

γ Coefficient for s
τ Process time constant
τI Integral time constant
τD Derivative time constant
µ Growth rate for Monod kinetics
Abbreviations:
PID Proportional, Integral, Derivative controller
NMP Non-Minimum Phase
FOPTD First Order plus Time Delay
SOPTD Second Order plus Time Delay
USOPTD Unstable second order plus time delay
IMC Internal Model Control
SA Stability Analysis
IAE Integral of Absolute Error
ITAE Integral of Time weighted Absolute Error
ISE Integral of Squared Error
TV Total Variation in manipulated variable
G Process transfer function
GC Controller transfer function
MS Maximum Sensitivity function
SOPTDZ Second Order Plus Time Delay with Zeros
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