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In this article, a layerwise shear deformation theory is incorporated for geometrically nonlinear vibration
(GNV) analysis of multiferroic composite plates and doubly curved shells. The coupled constitutive equa-
tions involving ferroelastic, ferroelectric and ferromagnetic properties of multiferroic composite materi-
als along with the total potential energy principle are utilized to derive the finite element formulation for
the multiferroic or magneto-electro-elastic (MEE) plates/shells. The electric and the magnetic potentials
are assumed to vary linearly in the transverse direction. The electric and magnetic potential distribution
in the plate/shell is computed by using the Maxwell’s electromagnetic relations. The significance of geo-
metric nonlinearity has been considered using the von Kármán nonlinear strain-displacement relations.
Importance of curvature aspect ratio, curvature ratio and the thickness aspect ratio on the nonlinear fre-
quency ratios of the multiferroic/MEE doubly curved shells has been investigated. The backbone curves
for multiferroic plates and shells have been studied by considering various aspect ratios. Impact of layer
stacking sequence, boundary conditions and coupled fields on the central deflection and nonlinear fre-
quency ratio of the multiferroic plates and shells have been investigated.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction the multiferroic/MEE composites gained significant importance in
Special class of multiphase composite which exhibit the ferro-
electric/piezoelectric and magnetostrictive effects are commonly
called as multiferroic or magneto-electro-elastic (MEE) compos-
ites. These composites have received more attention of the
researchers due to their smart properties such as ferroelastic, fer-
roelectric and ferromagnetic coupling effects. Further, single phase
multiferroic composites possess simultaneously more than one
energy forms among elastic, electric and magnetic. It is evident
from the literature that among the several smart materials, the
multiphase composites produced by using the ferroelectric mate-
rial BaTiO3 (barium titanate) and the ferromagnetic material
CoFe2O4 (cobalt ferrite) can exhibit considerably higher coupling
effect in comparison to individual constituent phases [1]. These
superior coupling properties of the multiferroic composites may
be stimulated the researchers to use these materials in sensors
and smart control applications, ultrasonic imaging devices, aero-
nautical and automotive control systems, sonar applications etc
[1–4]. The properties of multiferroic composites can be greatly
improved by using layered/laminated form than the bulk/fiber
form [3]. On account of these interesting multi behavior properties,
smart structural applications.
The novel research on the electromagnetic effect in mechanical

media has attracted the interest of many researchers. The material
consisting of piezoelectric and piezomagnetic phases has been
developed and studied the effect of elasto-magnetic coupling by
Boomgaard et al. [4]. The composite material having the piezoelec-
tric and magnetostrictive properties is developed for the broad
band electromagnetic transducer by Bracke and Van [5]. Theoreti-
cal and experimental investigation on the electromagnetic com-
posites was investigated by Harshe et al. [6]. Avellaneda and
Harshe [7] presented the electromagnetic effect in piezoelectric/
magnetostrictive multilayer (2–2) composites. As an early pioneer-
ing work, Pan [8] studied the exact solutions of multilayered MEE
plates using modified Stroh formalism and propagator matrix
method and same approach was extended for free vibration analy-
sis by Pan and Heyliger [9]. Buchanan [10] determined the natural
frequencies for MEE infinite plate. Numerous techniques have been
applied to examine the free vibration analysis of functionally
graded MEE plates/shells, namely, independent state equations
by Chen et al. [11], finite element (FE) method by Bhangale and
Ganesan [12,13], discrete layer method by Ramirez et al. [14], an
asymptotic approach by Tsai et al. [15]. The FE model based on a
higher order shear deformation theory for static and free vibration
analysis of MEE plates has been developed by Moita et al. [16].
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Fig. 1. (a) Schematic diagram of the B/F/B magneto-electro-elastic/multiferroic
doubly curved shell (b) curvature of paraboloid shell (c) Curvature of hyperboloid
shell.
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Making use of three dimensional exact theory, the bending prob-
lem of multiferroic rectangular plate with magnetoelectric cou-
pling and imperfect interfaces is investigated by Chen et al. [17].
Wu and Tsai [18] investigated the dynamic responses of function-
ally graded (FG) MEE shells using the method of multiple scales.
Wang et al. [19] studied the transient analysis of multiferroic com-
posite plate by developing a three dimensional finite element for-
mulation and implemented into the software ABAQUS. Lang and Li
[20] carried out the buckling and vibration analysis of FG magneto-
electro-thermo-elastic circular cylindrical shell by considering the
mechanical, electric, magnetic and thermal coupling effects.

Owing to the flexibility, light weight and lower damping proper-
ties of multiferroic/MEE composite structures, the dominance of
large amplitude vibrations may be observed in the structure. Thus,
the influence of geometrical nonlinearity in the composite structure
becomesprominentwhichmay lead to instability andprogressive or
catastrophic failure of the structure. Recently, considerable research
on the large amplitude/ large deflection analysis of the MEE plates/
shells has been reported in the literature. Xue et al. [21] demon-
strated the analytical solutions for the large-deflection model of
rectangularMEE thin plate. They noticed the negligible effect of cou-
pling on the deflection of MEE plate. Sladek et al. [22,23] demon-
strated the effect of boundary conditions and layer thickness on
multiferroic composites using meshless local Petrov-Galerkin
method. Also, they extended the samemethod for large deformation
analysis of MEE thick plates under the static and time-harmonic
mechanical load and stationary electromagnetic load. Alaimo et al.
[24] proposed an equivalent single-layer model for the large deflec-
tion analysis of multilayered MEE laminates by a FE method.

Most recently, Xin and Hu [25] developed the hybrid analysis
with combination of the state space approach (SSA) and the dis-
crete singular convolution (DSC) algorithm to study the free vibra-
tion of simply supported multilayered MEE plates. Gou et al. [26]
investigated the static deformation of anisotropic four layered
MEE plates under surface loading based on the modified couple-
stress theory. Liu et al. [27] determined the high order solutions
for the MEE plates with non uniform materials. Zhou and Zhu
[28] used the third order shear deformation theory to study the
vibration and bending analysis of multiferroic plates. Further, non-
linear analysis of MEE plates has attracted the interest of research-
ers considerably. Chen and Yu [29] used the variational asymptotic
method to develop the geometrically nonlinear multiphysics plate.
Rao et al. [30] proposed the geometrically nonlinear static analysis
of multilayered MEE composite structures. Shooshtari and Razavi
[31] investigated a nonlinear free and forced vibration of trans-
versely isotropic rectangular MEE thin plate using thin plate theory
along with the von Kármán procedure. They extended the same
procedure for linear and nonlinear free vibration of multilayered
MEE doubly curved shell on elastic foundation [32] and also stud-
ied the nonlinear free vibration of symmetric MEE laminated rect-
angular plate using first order shear deformation theory (FSDT)
[33]. Kattimani and Ray [34,35] investigated on the control of geo-
metrically nonlinear vibrations (GNV) of MEE plates and shells
using 1–3 piezoelectric composites and later extended their study
for FG MEE plates [36]. Further, the comprehensive research on
magneto-electro-elastic plates and doubly curved shells has been
investigated as doctoral study by Kattimani [37]. Milazzo and his
co-workers have been working on the large deflection analysis of
magneto-electro-elastic plates using first order shear deformation
theory and FE analysis also they have presented smart laminate
free vibrations of FG MEE plate using refined equivalent single
layer models [38–40]. Farajpour et al. [41] investigated the nonlin-
ear free vibration of size dependent MEE nanoplates subjected to
external electric and magnetic potentials by considering the geo-
metrical nonlinearity. In this article, GNV analysis of MEE plates
and shells has been investigated. For such investigation, three
dimensional FE analysis of the MEE plate/shells has been carried
out taking into consideration of electro-elastic and magneto-
elastic coupled fields. The effects of different parameters such as
the curvature ratio, the curvature aspect ratio, the thickness aspect
ratio, the coupling coefficients and the edge boundary conditions
on the central deflection and the nonlinear frequency ratios of
the MEE plates and doubly curved shells has been studied.

2. Problem description

A schematic representation of multiferroic or magneto-electro-
elastic doubly curved shell, the curvature diagram of the paraboloid
shell and the hyperboloid shell are illustrated in Fig. 1(a), (b) and (c),
respectively. The dimensions of the multiferroic shell are the curvi-
linear length a, the curvilinear width b and the total thickness H. R1

and R2 are the radii of curvature of the middle surface. It may be
noted that the FE formulation derived here can also be used for the
analysis ofMEEplates by considering the radii of curvature infinitely
large (say R1 = R2 = 2000). The middle layer of the doubly curved
shell is made of ferromagnetic (magnetostrictive) while the bottom
and top layer of the shell are made of ferroelectric (piezoelectric).
This layer stacking sequence is commonly knownas B/F/B indicating
B for ferroelectric (Barium titanate) and F for magnetostrictive
(Cobalt ferrite). However, the FE formulation derived here can be
used for any order of stacking sequence of the multiferroic compos-
ite. In the present analysis, the results are obtained for three layered
B/F/B and F/B/F layer stacking sequences. The origin of the curvilin-
ear coordinate system (xyz) is chosen at one of the corner of the
middle-plane of the middle layer of the multiferroic shell such that
the curvilinear lines x = 0 and a and y = 0 and b correspond to the
boundaries of the middle-plane of the multiferroic substrate.

2.1. Kinematics of deformations of MEE shell

The multiferroic shell/plate is made of layer of different materi-
als. Hence, to obtain the accurate results, the layerwise shear order
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deformation theory has been incorporated to express the kinemat-
ics of deformation of the multiferroic shell. A schematic diagram of
the kinematics of deformations of the undeformed transverse nor-
mal in the xz- and the yz-planes are illustrated in Figs. 2(a) and (b),
respectively. hx and hy are the rotations of transverse normal lying
in the substrate in the xz-plane and in the yz-plane, respectively.
Consequently, the axial displacements u and v of any point in the
doubly curved shell corresponding to the x- and the y-directions,
respectively, may be obtained as follows:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ hxðx; y; tÞ;vðx; y; z; tÞ
¼ v0ðx; y; tÞ þ hyðx; y; tÞ ð1aÞ

while for the transverse displacement assumed for the multiferroic
shell can be written as

wðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zhzðx; y; tÞ þ z2/zðx; y; tÞ ð1bÞ
where, u0, v0 and w0 are the translational displacements at any
point on the mid-plane of the substrate along x-, y- and z-
directions, respectively, while the generalized rotational displace-
ments are hz and /z. To facilitate the computation and evaluation,
the displacement variables (rotational {dr} and translational {dt})
are separately written as

fdtg ¼ ½u0 v0 w0 �T and fdrg ¼ ½ hx hy hz /z �T ð2Þ
2.2. Strain-displacement relations

The selective integration rule has been utilized to overcome the
problem of shear locking in thin structures and computing the ele-
ment stiffnessmatrices associatedwith the transverse sheardeforma-
tions. To facilitate this task, the in-plane strain vector and transverse
shear strains at any point in the multiferroic shell are expressed as

febg ¼ f ex ey ez exy g and fesg ¼ f exz eyz g ð3Þ

The normal strains in Eq. (3) along x-, y- and z-directions are ex,
ey and ez, respectively, the in-plane shear strain is exy, the trans-
verse shear strains are exz and eyz. The strain vectors defining the
state of in-plane and transverse normal strains at any point in the
multiferroic doubly curved shell can be expressed using the von
Kármán type nonlinear strain-displacement relations as follows:

fekbg ¼ febtg þ ½Zn�ferbg þ fetbng; k ¼ 1;2;3; . . . ;N and
feksg ¼ fetsg þ ½Zs�fersg; k ¼ 1;2;3; . . . ;N

ð4Þ

The transformation matrices [Zn], [Zs] and the generalized strain
vectors in Eq. (4) for the multiferroic shell are given by
Fig. 2. Kinematics of deformations of the multiferroic shell (a) the transverse cross s
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2.3. Coupled constitutive relations

Similarly, the state of stress at any point in the multiferroic shell
can be expressed as:

frbg ¼ ½rx ry rz rxy �T and frsg ¼ ½rxz ryz �T ð6Þ
in which rx ,ry and rz are the normal stresses along x-, y- and z-
directions, respectively; rxy is the in-plane shear stress; rxz and
ryz are transverse shear stresses. The coupled constitutive relations
for the multiferroic solid substrate are given by

frk
bg ¼ ½�Ck

b�fekbg � fekbgEz � fqk
bgHz and frk

sg ¼ ½�Ck
s �feksg;

Dz ¼ fekbg
Tfekbg þ 2k

33Ez þ d33Hz;

Bz ¼ fqk
bg

Tfekbg þ d33Ez þ l33Hz:

ð7Þ

where, k = 1, 2, 3,. . .,N, Dz, Ez, Bz and Hz are the electric displace-
ment, electrical field, magnetic induction, magnetic field, respec-
tively, along the z-direction; [�Cs

b] and [�Cs
s] are transformed elastic

coefficient matrices; l33 and 2s
33 are the magnetic permeability con-

stant and dielectric constant, respectively; d33, {esb} and {qs
b} the

electromagnetic coefficient, piezoelectric coefficient matrix and
the magnetostrictive coefficient matrix, respectively. The assorted
matrices shown in Eq. (7) are given by
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ection parallel to xz-plane and (b) transverse cross section parallel to yz-plane.
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2.4. Electric field-potential relations

Making use of the Maxwell’s electromagnetic equations, the

transverse electric field in the top layer Et
z, in the bottom layer Eb

z

and the middle magnetic field Hz in case of B/F/B staking sequence
of the multiferroic shell are related to the electric potentials /t and
/band the magnetic potential w as follows:

Et
z ¼ � @/t

@z
; Eb

z ¼ � @/b

@z
and Hz ¼ � @w

@z
ð9Þ

It should be noted that for very small layer thickness, the vari-
ation of the electric potential and the magnetic potential functions
may be assumed linear. Also, the interfaces between the ferroelec-
tric layer and the magnetostrictive layer are duly grounded. Conse-
quently, the electric potential functions for the top ferroelectric
layer (/t), the bottom ferroelectric layer (/b) and the magnetic
potential distribution field in the middle ferromagnetic layer (w)
of the multiferroic composite substrate can be obtained respec-
tively as follows:

/t ¼ z� z1
h

�/1; /b ¼ � z� h2

h
�/2 and w ¼ z� h2

h
�w ð10Þ

where, z1 and h2 are the bottom surface of the top piezoelectric
layer and the top surface of the bottom piezoelectric layer of the
substrate along the z-coordinate, respectively; �/1 and �/2 are electric
potentials on the top and the bottom surface of the piezoelectric
layer while �w is the magnetic potential on the top surface of the
magnetostrictive layer. The thickness of each layer of the substrate
is h. It should also be noted that Eqs. (9) and (10) can be augmented
for the F/B/F stacking sequence of the multiferroic shell/plate by
reinstating the top and the bottom ferroelectric layers with the fer-
romagnetic layers, while the middle layer is ferroelectric.

3. Finite element formulations for multiferroic shell/plate

The multiferroic substrate shell is discretized by eight noded
iso-parametric quadrilateral elements. The size of the mesh for
computing the numerical results is considered as 4 � 4. This
results into the total number of translational degrees of freedom
as 195 while the total number of rotational degrees of freedom is
520. The principle of virtual work employed to derive the govern-
ing equations of the multiferroic shell as follows:X3

k¼1

Z
Xk

dfekbg
Tfrk

bg þ dfeksg
Tfrk

sg
� �

dXk �
Z
Xt
dEt

zD
t
zdX

t

�
Z
Xb

dEb
zD

b
zdX

b �
Z
Xm

dHzBzdX
m �

Z
A
dfdtgTffgdA

þ
X3
k¼1

Z
Xk

dfdtgTqkf€dtgdXt ¼ 0 ð11Þ

{f} = [0 0 p]T is the externally applied surface traction vector act-
ing over a surface area A with p being the transverse step load. Xk

(k = 1, 2, 3,. . .,N) indicates the volume of the relevant layer, qk is the
mass density of the kth layer and d is the symbol of the first varia-
tion. The displacement vectors in general related with the ith (i = 1,
2, 3, . . .,8) node of an element may be written as

fdtig ¼ ½u0i v0i w0i �T and fdrig ¼ ½ hxi hyi hzi /zi �T ð12Þ

The nodal generalized displacement vectors ({de
t } and {de

r}), the
nodal electric potential vector {/e} and the nodal magnetic poten-
tial vector {�we} at any point within the element can be written as

fdtg ¼ ½Nt�fde
tg; fdrg ¼ ½Nr �fde

rg;
f/g ¼ ½/1 /2 �T ¼ ½N/�f/eg and �w ¼ ½Nw�f�weg

ð13Þ
in which,

fde
t g ¼ ½ fde

t1g
T fde

t2g
T � � � fde

t8g
T �T ; fde

rg ¼ ½ fde
r1g

T fde
r2g

T � � � fde
r8g

T �T ;
f/eg ¼ ½/11 /21 /12 /22 � � � /18 /28 �T ; f�weg ¼ ½ �w1

�w2 � � � �w8 �T ;
½Nt � ¼ ½Nt1 Nt2 � � � Nt8 �T ; ½Nr � ¼ ½Nr1 Nr2 � � � Nr8 �T ;

½N/� ¼
n1 0 n2 0 � � � n8 0
0 n1 0 n2 � � � 0 n8

� �T
;

½Nw� ¼ ½n1 n2 � � � n8 �T ; Nti ¼ niIt ; Nri ¼ niIr :

ð14Þ

where [Nt], [Nr], [N/] and [Nw] are the (3 � 24), (8 � 64),
(2 � 16) and (1 � 8) shape function matrices, respectively, It and
Ir are the (3 � 3) and the (8 � 8) identity matrices, respectively
and ni is the shape function of natural coordinates associated with
the ith node. Also, /1i, /2i (i = 1, 2, 3, . . .,8) are nodal electric poten-
tial degrees of freedom and �wi (i = 1, 2, 3, . . .,8) are the magnetic
potential degrees of freedom. Using Eqs. (9), (10) and (13), the

transverse electric fields Et
z, E

b
z and the transverse magnetic field

Hz are given by

Et
z ¼ �1

h
½1 0 �½N/�f/eg; Eb

z ¼ �1
h
½ 0 1 �½N/�f/eg and Hz ¼ �1

h
½Nw�f�weg

ð15Þ
Now, using Eqs. (4) and (13), the generalized strain vectors at

any point within the element can be expressed in terms of the
nodal generalized displacement vectors as follows:

febtg ¼ ½Btb�fde
tg; febrg ¼ ½Brb�fde

rg; fetbng ¼ 1
2 ½B1�½B2�fde

tg;
festg ¼ ½Bts�fde

tg and fersg ¼ ½Brs�fde
rg

ð16Þ

in which the nodal strain-displacement matrices [Btb], [Brb],
[Bts], [Brs], [B1] and [B2] are given by

½Btb� ¼ ½Btb1 Btb2 � � � Btb8 �; ½Brb� ¼ ½Brb1 Brb2 � � � Brb8 �;
½Bts� ¼ ½Bts1 Bts2 � � � Btb8 �; ½Brs� ¼ ½Brs1 Brs2 � � � Brs8 �;

½B1� ¼
dw0

dx
0

dw0

dy
0

0
dw0

dy
dw0

dx
0

2
664

3
775

T

; ½B2� ¼ ½B21 B22 � � � B28 �

ð17Þ
The various submatrices [Btbi], [Brbi], [Btsi] and [Brsi] (i = 1, 2, 3, . . .,

8) are clearly demonstrated in Appendix A. On substituting Eqs. (4),
(7), (15) and (16) into Eq. (11), the open loop elemental equations of
motion for the multiferroic shell are derived as follows:

½Me�f€de
tg þ ½Ke

tt�fde
tg þ ½Ke

tr�fde
rg þ ½Ke

t/�f/eg þ ½Ke
tw�fweg ¼ fFe

tg
ð18Þ

½Ke
tr �Tfde

tg þ ½Ke
rr �fde

rg þ ½Ke
r/�f/eg þ ½Ke

rw�fweg ¼ 0 ð19Þ

½Ke
/t �fde

tg þ ½Ke
r/�Tfde

rg � ½Ke
//�f/eg ¼ 0 ð20Þ

½Ke
wt �fde

tg þ ½Ke
rw�Tfde

rg � ½Ke
ww�fweg ¼ 0 ð21Þ

In Eqs. (18)–(21), the assorted vectors and matrices are [Me],
([Ke

tt], [K
e
tr], [K

e
rr]), ([K

e
t/], [K

e
r/]), ([K

e
tw], [K

e
rw]), [K

e
//], [K

e
ww] and {Fe

t }
the elemental mass matrix, elastic stiffness matrices, electro-
elastic coupling stiffness matrices, magneto-elastic coupling stiff-
ness matrices, electrical stiffness matrix, magnetic stiffness matrix
and the elemental mechanical load vector, respectively. The ele-
mental vectors, matrices, stiffness matrices, various rigidity matri-
ces and vectors appearing in Eqs. (19)–(21) are given in Appendix
B. These elemental equations of motion are assembled to obtain
the coupled global equations of motion of the multiferroic shell/-
plate as follows:



Fig. 3. Central deflection vs. transverse load intensity for a clamped-clamped
multiferroic plate/shell (R1 =1, R2 = R1).
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½M�f€Xg þ ½Ktt �fXg þ ½Ktr �fXrg þ ½Kt/�f/g þ ½Ktw�fwg ¼ fFg; ð22Þ

½Ktr�TfXg þ ½Krr �fXrg þ ½Kr/�f/g þ ½Krw�fwg ¼ 0; ð23Þ

½Kt/�TfXg þ ½Kr/�TfXrg � ½K//�f/g ¼ 0; ð24Þ

½Ktw�TfXg þ ½Krw�TfXrg � ½Kww�fwg ¼ 0 ð25Þ
where, the mass matrix [M] and the various stiffness matrices

[Kii] appearing in Eq. (22)–(25) without superscript e represent
the global mass matrix and global stiffness matrices, respectively.
{F} is the global nodal mechanical load vector, {X}, {Xr}, {/} and
{w} are the global generalized nodal displacement vectors, electri-
cal potential and magnetic potential vectors, respectively. Now,
applying the boundary conditions and condensation technique to
obtain the nodal translational and rotational displacement vectors
as follows:

½M�fXtg þ ½K1�fXtg þ ½K2�fXrg ¼ fFg ð26Þ

½K3�fXtg þ ½K4�fXrg ¼ 0 ð27Þ
in which, the augmented matrices are given in Appendix C. Further,
using Eqs. (26) and (27), the global open-loop equations of motion
in time domain are obtained by condensing the rotational degrees
of freedom {Xr}, as follows:

½M�f€Xtg þ ½K��fXtg ¼ fFg ð28Þ
where,

½K�� ¼ ½K1� � ½K2�½K4��1½K3� ð29Þ
Fig. 4. Central deflection of the plate vs. transverse load intensity for a simply
supported multiferroic plate/shell (R1 =1, R2 = R1).
4. Results and discussions

The finite element (FE) formulation derived in the earlier sec-
tion is used to analyze the GNV of the multiferroic composite
shells/plates. The multiferroic parabolic shell considered for com-
puting the numerical results is shown schematically in Fig.1. The
aspect ratio (a/H) of the multiferroic doubly curved shell/plate is
considered to be 200. The multiferroic substrate shell is modeled
by three layers of equal thickness (h = 0.001 m) with the stacking
sequences B/F/B. However, the results are obtained for the stacking
sequence F/B/F also. The material properties of BaTiO3 and CoFe2O4

[8] and BF50% [33] are listed in Table 1. The boundary conditions
for the multiferroic plates employed are given in Eq. (30) whereas
Table 1
Material properties of BaTiO3 and CoFe2O4 [8].

Material properties with units BaTiO3 CoFe2O4 BF50% [30]

C11 = C22 (109 N/m2) 166 286 213
C12 (109 N/m2) 77 173 113.5
C13 = C23 (109 N/m2) 78 170.5 112.8
C33 (109 N/m2) 162 269.5 206.5
C44 (109 N/m2) 43 45.3 49.7
C66 (109 N/m2) 44.5 56.5 49.8
e31 = e32 (C/m2) �4.4 0 �2.71
e33 (C/m2) 18.6 0 8.86
e24 = e15 (C/m2) 11.6 0 0.15
q31 = q32 (N/Am) 0 180.3 222.6
q33 (N/Am) 0 699.7 292.01
q24 = q15 (N/Am) 0 550 185.13
l11 = l22 (10�6 Ns2/C2) 5 �590 �192.2
l33 (10�6 Ns2/C2) 10 157 83.14
211 = 222 (10�9 C2/Nm2) 11.2 0.08 0.71
233 (10�9 C2/Nm2) 12.6 0.093 6.32
q (kg/m3) 1600 1600 1600
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in all cases the electric and the magnetic potentials at the bound-
aries are assumed to be zero.

For simply supported

At x ¼ 0 and a;v0 ¼ w0 ¼ hy ¼ /y ¼ cy ¼ hz ¼ /z ¼ 0
At y ¼ 0 and b;u0 ¼ w0 ¼ hx ¼ /x ¼ cx ¼ hz ¼ /z ¼ 0

ð30aÞ

For clamped-clamped

At x ¼ 0 and a; y ¼ 0 and b; u0 ¼ v0 ¼ w0 ¼ hx ¼ hy ¼ /x

¼ /y ¼ cy ¼ hz ¼ /z ¼ 0 ð30bÞ
4.1. Validation of the FE model

In order to validate the present finite element (FE) formulation,
the non-dimensional load parameter q0 = qa4/C11H4 is considered
Table 2
Non dimensional central deflection (w/H) of multiferroic/MEE plate (R1 =1, R2 = R1).

B/F/B

Simply Supported Clamped-clamped

a/H q0 (Pa) Linear Nonlinear Linear No

100 100 0.0034 0.0034 0.0022 0.
300 0.0102 0.0102 0.0065 0.
600 0.0204 0.0204 0.0130 0.
900 0.0306 0.0306 0.0195 0.
1200 0.0408 0.0407 0.0260 0.
1500 0.0510 0.0509 0.0325 0.

150 100 0.0169 0.0169 0.0102 0.
300 0.0508 0.0507 0.0305 0.
600 0.1016 0.1008 0.0609 0.
900 0.1524 0.1501 0.0914 0.
1200 0.2033 0.1984 0.1219 0.
1500 0.2541 0.2453 0.1523 0.

200 100 0.0523 0.0521 0.0294 0.
300 0.1570 0.1543 0.0883 0.
600 0.3140 0.2984 0.1765 0.
900 0.4709 0.4292 0.2648 0.
1200 0.6279 0.5483 0.3531 0.
1500 0.7849 0.6597 0.4413 0.

Table 3
Non dimensional central deflection (w/H) of multiferroic doubly curved shell.

B/F/B

Simply Supported Clamped-clamped

a/H q0
(Pa)

Paraboloid
(R1 = 10a,
R2 = R1)

Hyperboloid
(R1 = 10a,
R2 = -R1)

Paraboloid
(R1 = 10a,
R2 = R1)

Hyperboloid
(R1 = 10a,
R2 = -R1)

100 100 0.00083 0.00339 0.00067 0.00139
300 0.00249 0.01018 0.00202 0.00419
600 0.00498 0.02036 0.00404 0.00837
900 0.00746 0.03053 0.00605 0.01254
1200 0.00993 0.04069 0.00806 0.01671
1500 0.01234 0.05085 0.01006 0.02087

150 100 0.00208 0.01683 0.00175 0.01019
300 0.00625 0.05043 0.00525 0.03050
600 0.01246 0.10053 0.01047 0.06072
900 0.01862 0.14998 0.01566 0.09064
1200 0.02475 0.19851 0.02082 0.12025
1500 0.03083 0.24590 0.02594 0.14954

200 100 0.00375 0.05158 0.00320 0.01019
300 0.01123 0.15339 0.00959 0.03050
600 0.02236 0.29860 0.01909 0.06072
900 0.03337 0.43145 0.02850 0.09064
1200 0.04428 0.55248 0.03784 0.12025
1500 0.05509 0.66506 0.04709 0.14954
to compute the variation of the non dimensional vertical displace-
ment w/H at the center of the multiferroic shell/plate and com-
pared with the results available in the literature [23] for the
identical material properties and plate dimensions. The same is
illustrated in Fig. 3. In addition, linear solution is also plotted to
demonstrate the nonlinear stiffening effect in the plate/shell. It
may be noticed that the results are in excellent agreement with
each other. To facilitate further validation, the results of the simply
supported multiferroic/MEE shell with infinite radii of curvature
(R1 =1, R2 = R1) are considered for the comparison with the
recently reported results by Milazzo et al. [38] and Rao et al. [30]
for the identical geometrical parameters and material properties.
Fig. 4 illustrates this comparison for the simply supported MEE
plate/shell (R1 =1, R2 = R1). It may also be noticed from this figure
(Fig. 4) that the results are in very good agreement.
F/B/F

Simply Supported Clamped-clamped

nlinear Linear Nonlinear Linear Nonlinear

0022 0.0027 0.0027 0.0017 0.0017
0065 0.0082 0.0082 0.0052 0.0052
0130 0.0164 0.0164 0.0103 0.0103
0195 0.0246 0.0246 0.0155 0.0154
0259 0.0328 0.0328 0.0206 0.0205
0324 0.0410 0.0410 0.0258 0.0257

0102 0.0137 0.0137 0.0081 0.0081
0304 0.0410 0.0409 0.0244 0.0244
0607 0.0820 0.0816 0.0488 0.0487
0909 0.1231 0.1219 0.0732 0.0729
1207 0.1641 0.1616 0.0975 0.0970
1503 0.2051 0.2007 0.1219 0.1209

0294 0.0424 0.0423 0.0237 0.0237
0878 0.1273 0.1259 0.0712 0.0709
1736 0.2545 0.2464 0.1424 0.1409
2563 0.3818 0.3592 0.2136 0.2092
3353 0.5515 0.4637 0.2848 0.2756
4104 0.6363 0.5611 0.3560 0.3396

F/B/F

Simply Supported Clamped-clamped

Paraboloid
(R1 = 10a,
R2 = R1)

Hyperboloid
(R1 = 10a,
R2 = -R1)

Paraboloid
(R1 = 10a,
R2 = R1)

Hyperboloid
(R1 = 10a,
R2 = -R1)

0.00074 0.00273 0.00059 0.00116
0.00224 0.00819 0.00179 0.00350
0.00447 0.01639 0.00357 0.00700
0.00670 0.02459 0.00535 0.01049
0.00892 0.03278 0.00713 0.01398
0.01114 0.04096 0.00890 0.01747

0.00192 0.01359 0.00159 0.00408
0.00573 0.04077 0.00478 0.01223
0.01143 0.08139 0.00953 0.02441
0.01710 0.12170 0.01426 0.03654
0.02273 0.16157 0.01896 0.04862
0.02833 0.20088 0.02364 0.06065

0.00348 0.01114 0.00296 0.00900
0.01042 0.12509 0.00886 0.02694
0.02076 0.24610 0.01765 0.05367
0.03101 0.36018 0.02636 0.08018
0.04116 0.46637 0.03500 0.10646
0.05122 0.56526 0.04357 0.13251



Fig. 6. Backbone curves for the simply supported multiferroic plates
(R1 =1, R2 = R1).

Fig. 7. Influence of curvature ratio (R1/a) on the nonlinear frequency ratio (xnl/xl)
for the simply supported B/F/B-multiferroic doubly curved shells (a/H = 200).
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4.2. Geometrically nonlinear vibrations (GNV) behavior

The GNV of the multiferroic or MEE shell/plate under a uniform
pressure loading is investigated for different aspect ratio (a/H). The
non dimensional central deflection versus aspect ratio and the
intensity of load for the simply supported and clamped-clamped
B/F/B and F/B/F multiferroic plate (R1 =1, R2 = R1) is depicted in
Table 2. It evident from this table that with the increase in aspect
ratio (a/H) considerable increase in the nonlinear central deflection
of a simply supported and clamped-clamped B/F/B and F/B/F
plates. The comparison of linear and nonlinear central deflections
of the multiferroic plate reveals that the behavior of the plate is
almost linear for smaller aspect ratio (a/H = 100) while distinguish-
able nonlinearity has been observed for the higher aspect ratio (a/
H = 200). It may also be noticed that the central deflection in case
of the B/F/B plate is higher than the F/B/F plate. Further, analogous
trend has been noticed for the multiferroic doubly curved shells as
depicted in Table 3, which illustrates the same for simply sup-
ported and clamped–clamped paraboloid (R1 = 10a, R2 = R1) and
hyperboloid (R1 = 10a, R2 = �R1) multiferroic doubly curved shells.
The central deflection of the hyperboloid shells is higher than that
of the paraboloid shells for the same geometrical parameters.

4.2.1. Backbone curves and nonlinear dynamics
In order to investigate the dynamic behavior of the multiferroic

doubly curved shell/plate, the backbone curves for various aspect
ratio and boundary conditions has been considered for the analy-
sis. Consequently, the backbone curves depicting the variation of
the frequency ratio (xNL/xL) with the non-dimensional transverse
deflection (wmax/H) for the simply supported paraboloid (R1 = 10a,
R2 = 10R1) and hyperboloid (R1 = 10a, R2 = �10R1) multiferroic
shells are plotted in Fig. 5. It may be noticed from this figure that
the multiferroic/MEE shells display hardening type nonlinearity.
It may also be observed from Fig. 5 that for the value of wmax/H
greater than 0.4, the multiferroic shell exhibits geometrically non-
linear behavior and the nonlinearity increases with increase in fre-
quency ratio (xNL/xL). Fig. 6 illustrates the backbone curves for the
simply supported B/F/B and F/B/F multiferroic plates. It is evident
from this figure (Fig.6) that the multiferroic plates as well exhibit
hardening type nonlinearity. The behavior of the multiferroic plate
is linear for the value of non-dimensional transverse deflection
(wmax/H) is less than 0.2 while turn out be nonlinear for greater
than 0.2. In addition, the influence of the curvature ratio (R1/a)
on the response of the nonlinear frequency ratio (xNL/xL) of the
spherical (R2/R1 = 1) multiferroic shell has been presented in
Fig. 5. Backbone curves for the simply supported paraboloid (R1 = 10a, R2 = 10R1)
and hyperboloid (R1 = 10a, R2 = �10R1) multiferroic doubly curved shells.

Fig. 8. Influence of curvature aspect ratio on the nonlinear frequency ratio (xnl/xl)
for the simply supported B/F/B- multiferroic doubly curved shells (a/H = 200).
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Fig. 7. It is evident from this figure that the increase in the value of
R1/a increases the hardening type non linearity. Fig. 8 illustrates
the effect of the curvature aspect ratio (R2/R1) on the frequency
ratio (xNL/xL). It may be noticed from Fig.8 that as the amplitude
ratio increases, the geometric nonlinearity in the hyperboloid mul-
tiferroic shell transforms from softening type to hardening type
additionally, the influence of the aspect ratio (a/H) on the funda-
mental nonlinear frequency ratio (xNL/xL) for the paraboloid and
the hyperboloid shells with different stacking sequences have been
tabulated in Table 4. It may be seen from this (Table 4) that the fre-
quency ratio increases with the increase in the aspect ratio in both
the B/F/B and F/B/F paraboloid shells (R2/R1 = 10) and hyperboloid
shells (R2/R1 = �10) while this trend is reverse in case of multifer-
roic plates (R1 = 2000a, R1 = R2) as depicted in Table 5. It may also
be noted that the frequency ratio increases with the increase in
Table 4
Effect of the aspect ratio (a/H) of the multiferroic paraboloid and hyperboloid shell on the

Layer sequence Aspect ratio (a/H) Curvature Ratio A

0

B/F/B 20 R2 = 10R1 1
R2 = �10R1 1

50 R2 = 10R1 1
R2 = �10R1 1

100 R2 = 10R1 1
R2 = �10R1 1

F/B/F 20 R2 = 10R1 1
R2 = �10R1 1

50 R2 = 10R1 1
R2 = �10R1 1

100 R2 = 10R1 1
R2 = �10R1 1

Table 5
Effect of the aspect ratio (a/H) of the multiferroic plate on the frequency ratio (xnl/xl) of

Layer sequence Aspect ratio (a/H) Amplitude ratio (w

0.4

B/F/B 20 1.0222
50 1.0210
100 1.0200
200 1.0189

F/B/F 20 1.0195
50 1.0186
100 1.0177
200 1.0169

Table 6
Effect of the coupled fields on the frequency ratio (xNL/xL) of the multiferroic plate/shell

Layer sequence Amplitude ratio (wmax/H

0.4

Plate (R1 = 2000a, R1 = R2)
B/F/B Coupled 1.0189

Uncoupled 1.0190
F/B/F Coupled 1.0169

Uncoupled 1.0168

Paraboloid Shell (R1 = 10a, R1 = 10R2)
B/F/B Coupled 1.0669

Uncoupled 1.0686
F/B/F Coupled 1.0659

Uncoupled 1.0644

Hyperboloid Shell (R1 = 10a, R1 = �10R2)
B/F/B Coupled 1.0681

Uncoupled 1.0692
F/B/F Coupled 1.0650

Uncoupled 1.0643
the non-dimensional transverse deflection (wmax/H) for both MEE
plates and shells (Tables 4 and 5).

4.2.2. Effect of coupled fields
The effects of ferro-elastic or electro-elastic and the magneto-

elastic couplings may be excluded by setting the stiffness matrices
[Kt/], [K//], [Ktw] and [Kww] to null matrices. As a result, the
responses of the multiferroic composite plate will be free of from
these coupling effects. Hence, the effects of coupled fields
(ferroelastic/electro-elastic coupling and magneto-elastic cou-
pling) on the frequency ratio (xNL/xL) of a simply supported
MEE plate, paraboloid shell and hyperboloid shell for the B/F/B
and the F/B/F stacking sequences are tabulated in Table 6. It may
be observed from this table that the coupled fields (electro-
elastic and magneto-elastic) marginally affect the nonlinear fre-
frequency ratio (xnl/xl) of the shells (R1/a = 10).

mplitude ratio (wmax/H)

.4 0.8 1.2 1.6 2.0

.0366 1.1103 1.2102 1.3261 1.4509

.0341 1.1058 1.2044 1.3197 1.4442

.0525 1.1367 1.2450 1.3704 1.5073

.0476 1.1285 1.2349 1.3595 1.4964

.0672 1.1573 1.2652 1.3861 1.5163

.0623 1.1502 1.2581 1.3808 1.5141

.0322 1.0974 1.1866 1.2911 1.4042

.0299 1.0934 1.1815 1.2852 1.3981

.0467 1.1223 1.2202 1.3343 1.4596

.0423 1.1146 1.2105 1.3236 1.4486

.0613 1.1439 1.2433 1.3553 1.4765

.0565 1.1366 1.2355 1.3485 1.4718

the plate (R1 = 2000a, R1 = R2).

max/H)

0.8 1.2 1.6 2.0

1.0842 1.1760 1.2868 1.4089
1.0805 1.1713 1.2856 1.4164
1.0764 1.1633 1.2741 1.4027
1.0715 1.1529 1.2572 1.3792

1.0743 1.1561 1.2557 1.3660
1.0713 1.1526 1.2554 1.3740
1.0679 1.1459 1.2459 1.3629
1.0638 1.1368 1.2311 1.3420

(a/H = 200).

)

0.8 1.2 1.6 2.0

1.0715 1.1529 1.2572 1.3792
1.0718 1.1535 1.2585 1.3813
1.0638 1.1368 1.2311 1.3420
1.0635 1.1363 1.2303 1.3409

1.1462 1.2355 1.3325 1.4352
1.1501 1.2418 1.3414 1.4468
1.1437 1.2311 1.3259 1.4264
1.1406 1.2264 1.3195 1.4184

1.1515 1.2472 1.3522 1.4643
1.1542 1.2516 1.3586 1.4728
1.1444 1.2353 1.3351 1.4417
1.1430 1.2333 1.3326 1.4387
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quency ratio for lower value of the amplitude ratio (wmax/H) while
the effect is slightly increases for the higher value of (wmax/H). It
may also be noticed that the value of coupled nonlinear frequency
ratios (xNL/xL) are greater in case B/F/B MEE shell/plate than the
uncoupled frequency ratio whereas, this trend is reversed for the
F/B/F multiferroic plate/shell.

5. Conclusions

In this article, a layerwise shear deformation theory has been
incorporated to define the kinematics of deformations the multi-
ferroic/MEE doubly curved shells/plates. The GNV of multiferroic
composite plates/doubly curved shells has been analyzed using
the finite element analysis by considering the ferroelastic, ferro-
magnetic and elasto-magnetic coupled fields. The geometric non-
linearity is modeled by using the von Kármán type strain-
displacement relations. The nonlinear central deflection increases
with increase in aspect ratio of the multiferroic plate/shell. The
geometrically nonlinear dynamics of the multiferroic shells/plates
are of hardening type. The curvature aspect ratio, the curvature
ratio, thickness aspect ratio and boundary conditions exhibit sig-
nificant influence on the nonlinear behavior of the multiferroic
doubly curved shells. For the paraboloid geometry, the multiferroic
shells exhibit better stiffening effect than the hyperboloid geome-
try for the identical material properties. The nonlinear frequency
ratio increases with the increase in the aspect ratio of the multifer-
roic shells for both the B/F/B and the F/B/F paraboloid and hyper-
boloid shells whereas this trend is reverse in case of multiferroic
plates. The coupled fields (ferroelastic and elasto-magnetic)
slightly increases the nonlinear frequency ratio for the B/F/B stack-
ing sequence while this trend is reversed for the F/B/F multiferroic
plates. The effect of coupled fields is negligible for lower value of
amplitude ratio. The present FE model and the comprehensive
results presented in this article may provide benchmark problems
to future work on the multiferroic or magneto-electro-elastic
plates and shells pertaining to geometrically nonlinear vibration
analysis.

Appendix A

The various submatrices [Btbi], [Brbi], [Btsi] and [Brsi] (i = 1, 2, 3,
. . .,8) appearing in Eq. (19) corresponding to MEE shells are as
follows:

½Btbi� ¼

@ni

@x
0

1
R1

0
@ni

@y
1
R2

@ni

@y
@ni

@x
0

0 0 0

2
6666666664

3
7777777775
; Btsi½ � ¼

�1
R1

0
@ni

@x

0
�1
R2

@ni

@y

2
664

3
775;

½Brbi� ¼ B̂rbi
�0

~O �I

" #
; ½Brsi� ¼

�I ~O
~O B̂rsi

~O ~Brsi

2
64

3
75

in which,

½B̂rbi� ¼

@ni

@x
0

0
@ni

@y
@ni

@y
@ni

@x

2
6666664

3
7777775
; ½B̂rsi� ¼

@ni

@x
0

@ni

@y
0

2
664

3
775; ½~Brsi� ¼

0
@ni

@x

0
@ni

@y

2
664

3
775

�0 and ~O are the (3 � 2) and (2 � 2) null matrices, respectively. �I
is the (2 � 2) identity matrix.
Appendix B

The elemental vectors and matrices appearing in Eqs. (19)–(21)
are

½Ke
tt � ¼ ½Ke

tb� þ ½Ke
ts� þ ½Ke

tbn�; ½Ke
tr � ¼ ½Ke

trb� þ ½Ke
trbn� þ ½Ke

trs�;
½Ke

rt � ¼ ½Ke
trb�T þ 1

2 ½Ke
trbn�T þ ½Ke

trs�T ; ½Ke
rr � ¼ ½Ke

rrb� þ ½Ke
rrs�;

½Ke
t/� ¼ ½Ke

t/l� þ ½Ke
t/n�; ½Ke

tw� ¼ ½Ke
twl� þ ½Ke

twn�; ½Ke
/t � ¼ ½Ke

t/l�T þ 1
2 ½Ke

t/n�T ;
½Ke

wt � ¼ ½Ke
twl�T þ 1

2 ½Ke
twn�T ; fFe

/g ¼ fFe
1/gV1 þ fFe

2/gV2;

fFe
1/g ¼ R ae

0

R be
0 ½1 0 �T ½N/�Te33dxdy; fFe

2/g ¼ R ae
0

R be
0 ½0 1 �T ½N/�Te33dxdy;

fFe
mwg ¼ R ae

0

R be
0 ½Nw�Tl33dxdy; fFeg ¼ R be

0

R ae
0 ½Nt �Tffgdxdy

ðB1Þ
The elemental stiffness matrices appearing in Eq. (B1) corre-

sponding to the bending stretching deformations are

½Ke
tb� ¼

R ae
0

R be
0 ½Btb�T ½Dtb�½Btb�dxdy; ½Ke

trb� ¼
R ae
0

R be
0 ½Btb�T ½Dtrb�½Brb�dxdy;

½Ke
rrb� ¼

R ae
0

R be
0 ½Brb�T ½Drrb�½Brb�dxdy; ½Ke

trbn� ¼
R be
0

R ae
0 ½B2�T ½B1�T ½Dtrb�½Brb�dxdy;

½Ke
tbn� ¼ ½12 ½Btb�T ½Dtb�½B1�½B2� þ ½B2�T ½B1�T ½Dtb�½Btb� þ 1

2 ½B2�T ½B1�T ½Dtb�½B1�½B2��dxdy;
½Ke

t/� ¼
R ae
0

R be
0 ½Btb�T ½Dt/�½N/�dxdy; ½Ke

r/� ¼
R ae
0

R be
0 ½Brb�T ½Dr/�½N/�dxdy;

½Ke
t/n� ¼

R ae
0

R be
0 ½B2�T ½B1�T ½Dt/�½N/�dxdy; ½Ke

tw� ¼
R ae
0

R be
0 ½Btb�TfDtwg½Nw�dxdy;

½Ke
rw� ¼

R ae
0

R be
0 ½Brb�TfDtwg½Nw�dxdy; ½Ke

twn� ¼
R ae
0

R be
0 ½B2�T ½B1�TfDtwg½Nw�dxdy;

½Ke
//� ¼

R ae
0

R be
0 ½N/�T ½D//�½N/�dxdy; ½Ke

ww� ¼
R ae
0

R be
0 ½Nw�TfDwwg½Nw�dxdy;

½Me� ¼ R be
0

R ae
0

�m½Nt �T ½Nt �dxdy and �m ¼
X3
k¼1

R hkþ1
hk

qkdz:

ðB2Þ
and those associated with the transverse shear deformations are

½Ke
ts� ¼

R ae
0

R be
0 ½Bts�T ½Dts�½Bts�dxdy; ½Ke

trs� ¼
R be
0

R ae
0 ½Bts�T ½Dtrs�½Brs�dxdy;

½Ke
rrs� ¼

R be
0

R ae
0 ½Brs�T ½Drrs�½Brs�dxdy:

ðB3Þ
The various rigidity matrices and rigidity vectors involved in the

elemental matrices of Eqs. (B2) and (B3) are given by

½Dtb� ¼
X3
k¼1

R hkþ1
hk

½�Cs
b�

k
dz; ½Dtrb� ¼

X3
k¼1

R hkþ1
hk

½�Cs
b�

k½Z1�dz; ½Drrb�

¼
X3
k¼1

R hkþ1
hk

½Z1�T ½�Cs
b�

k½Z1�dz;

½Dts� ¼
X3
k¼1

R hkþ1
hk

½�Cs
s�
k
dz; ½Dtrs� ¼

X3
k¼1

R hkþ1
hk

½�Cs
s�
k½Z3�dz; ½Drrs�

¼
X3
k¼1

R hkþ1
hk

½Z3�T ½�Cs
s�
k½Z3�dz;

fDtwg ¼ R h3
h2
fqs

bg 1
h dz; fDt/g ¼ R h4

h3
fesbg 1

h ½1 0 �dzþ R h2
h1 fesbg 1

h ½0 1 �dz;
fDrwg ¼ R h3

h2
½Z1�Tfqs

bg 1
h dz; fDr/g ¼ R h4

h3
½z1�Tfesbg 1

h ½1 0 �dz
þ R h2

h1 ½z1�Tfesbg 1
h ½0 1 �dz;

½D//� ¼ 2s
33
h

1 0
0 1

� �
; ½Dww� ¼ 1

hl33

ðB4Þ
Appendix C

½K1� ¼ ½Ktt� þ ½Kt/�½K//��1½Kt/�T þ ½Ktw�½Kww��1½Ktw�T ;
½K2� ¼ ½Ktr� þ ½Kt/�½K//��1½Kr/�T þ ½Krw�½Kww��1½Krw�T ;
½K3� ¼ ½Krt� þ ½Kr/�½K//��1½K/t�T þ ½Krw�½Kww��1½Kwt �T ;
½K4� ¼ ½Krr� þ ½Kr/�½K//��1½Kr/�T þ ½Krw�½Kww��1½Krw�T :
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