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Abstract

Let D be a directed graph with n vertices and m edges. A function f : V (D) →
{1, 2, 3, ..., t}, where t ≤ n is said to be a harmonious coloring of D if for any two edges

xy and uv of D, the ordered pair (f(x), f(y)) �= (f(u), f(v)). If no pair (i, i) is assigned,

then f is said to be a proper harmonious coloring of D. The minimum t for which D admits

a proper harmonious coloring is called the proper harmonious coloring number of D. We

investigate the proper harmonious coloring number of graphs such as alternating paths and

alternating cycles.
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1. Introduction

In this paper, we consider only finite simple graphs. For all notations in graph theory we
follow Harary [3], West [6] and Chartrand [1]. Coloring the vertices and edges of a graph
which is required to obey certain conditions, have often been motivated by their utility to
various applied fields and their mathematical interest. Various coloring problems such as
the vertex coloring and edge coloring problem have been studied in the literature [3].

Definition 1.1. A coloring of a graph G is a function c : V (G) → X for some set of
colors X such that c(u) �= c(v) for each edge uv ∈ E(G).

The coloring defined above is the vertex coloring where we color the vertices of a graph
such that no two adjacent vertices are colored with the same color. Similarly the edge
coloring problem can be defined in such a way that no two adjacent edges are colored the
same color. Hopcroft and Krishnamoorthy [4] introduced a type of edge coloring called
harmonious coloring.

∗The work reported in this paper is a part of the research work done under the project No. SR/S4/MS-
425/2007 funded by the Department of Science & Technology(DST), Government of India for which we
are thankful.
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Definition 1.2. A harmonious coloring [4] of a graph G is an assignment of colors to the
vertices of G and the color of an edge is defined to be the unordered pair of colors to its
end vertices such that all edge colors are distinct. The harmonious coloring number is the
least number of colors needed in such a coloring.

Considerable body of literature has grown around the subject Harmonious Coloring.
The list of articles published on the subject can be found in [2].

The following is an extension of harmonious coloring to directed graphs given by Hegde
and Castelino [5].

Definition 1.3. Let D be a directed graph with n vertices and m edges. A function
f : V (D) → {1, 2, ..., t}, where t ≤ n is said to be a harmonious coloring of D if for any
two edges xy and uv of D , the ordered pair (f(x), f(y)) �= (f(u), f(v)). If no pair (i, i) is
assigned, then f is called a proper harmonious coloring of D. The minimum t for which
D admits a proper harmonious coloring is called the proper harmonious coloring number
of D and is denoted by −→χh(D) .

The following results have been proved by Hegde and Castelino [5].

Proposition 1.4. The proper harmonious coloring number of a symmetric digraph is
same as the proper harmonious coloring number of its underlying graph.

Proposition 1.5. Let D be a directed graph with n vertices. Then ∆ + 1 ≤ −→χh(D) ≤ n,
where ∆ is the maximum indegree or outdegree of any vertex v of D.

The harmonious coloring number of a star
−→
S n with n vertices is ∆ + 1 and the harmo-

nious coloring number of a complete symmetric digraph
←→
K n with n vertices is n.

Proposition 1.6. For any digraph D, −→χh(D) ≥ �1+
√

4m+1
2 	, where m is the number of

edges of D.

Let k = �1+
√

4m+1
2 	 be a parameter corresponding to a graph G with n vertices and m

edges, where �x	 denotes the least integer which is greater than or equal to real x. Unless

mentioned otherwise, we mean k = �1+
√

4m+1
2 	 throughout this paper.

Proposition 1.7. Let
−→
P n be a unipath with n vertices. Then −→χh(

−→
P n) = k.

Proposition 1.8. Let
−→
C n be a unicycle with n vertices, then,

−→χh(
−→
C n)=

{
k + 1 for n = k(k − 1)− 1,
k for n = (k − 1)(k − 2) + 1, ..., k(k − 1)− 2, k(k − 1).
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2. Proper Harmonious Colorings of Some Classes of Digraphs

In this section we present some results on the proper harmonious coloring number of
some classes of digraphs.

In general, the proper harmonious coloring problem has been viewed as an Eulerian
path decomposition of graphs. Whenever such a decomposition possible, it is possible to
find the proper harmonious coloring number of graphs [4].

Definition 2.1. An alternating Eulerian trail of a digraph D is an open trail of D in-
cluding all the edges and vertices of D with every adjacent edge having opposite direction.

Lemma 2.2. If G is a connected (undirected) non-bipartite graph in which every vertex
has even degree, then the symmetric digraph D(G) obtained from G has an alternating
closed Eulerian trail.

Proof. Let G be a connected (undirected) non-bipartite graph in which every vertex has
even degree. Since G is non-bipartite, it has a cycle of odd length. Also, since all the
vertices of G are of even degree, G is Eulerian. That is G has a closed Eulerian trail
say, T. Now, consider the symmetric digraph D(G) obtained from G by replacing each
undirected edge by a pair of edges with opposite orientations. Since G has a closed Eulerian
trail T, we get a closed Eulerian trail in D(G) in which the adjacent edges have opposite
direction as follows:

Suppose G has m edges. Then there exists two cases.

Case (i) Let m be odd.

We obtain the required alternating closed Eulerian trail in D(G) by traversing T twice
in the same direction but using the edges of alternating direction.

Case (ii) Let m be even.

We observe that T must visit some vertex v twice with an odd number of edges between
the visits (otherwise G would be bipartite). Hence we get T as v0 = v, v1, · · · , vi =
v, vi+1, · · · , vm = v, where i is odd. Then the required alternating closed Eulerian trail is
v0 = v → v1 ← · · · → vi = v ← v1 → · · · ← vi = v → vi+1 ← · · · → vm = v ← vi+1 →
· · · ← vm = v.

As a consequence of the above lemma, we have the following lemma.

Lemma 2.3. The alternating cycle on n vertices can be colored with k colors if there is
a connected (undirected) non-bipartite graph G, with every vertex having even degree and
with k vertices and n

2 edges.

Definition 2.4. An alternating path
−−→
APn with n vertices is an oriented path in which any

two consecutive edges have opposite directions.
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Theorem 2.5. Let
−−→
APn be an alternating path. Then

−→χh(
−−→
APn) =

{
k + 1 if k is even and k2 − 2k + 3 ≤ n ≤ k2 − k + 1
k otherwise.

Proof. Since
−−→
APn is an alternating path with n vertices and n−1 edges, by Proposition 1.6,

we get −→χh(
−−→
APn) ≥ k. When −→χh(

−−→
APn) = k, it follows that k2 − 3k + 4 ≤ n ≤ k2 − k + 1.

Let G be a connected (undirected) non-bipartite graph in which every vertex has even

degree. Then the proper harmonious coloring number of
−−→
APn is equivalent in finding an

alternating Eulerian trail by traversing in the same direction but using edges of opposite
direction in D(G). Now, consider a complete undirected graph Kk with k vertices.

Case (i) Let k be odd and let G = Kk. Then G contains k(k−1)
2 edges. Since G is

non-bipartite and all the vertices are of even degree, G has an undirected closed Eulerian
trail T. Then by Lemma 2.2, we obtain the required alternating closed Eulerian trail in
D(G).

Case (ii) Let k be even.

Case (a) Let k = 4 and let v1, v2, v3 and v4 be the vertices of K4. Then we can find an

alternating Eulerian trail in
←→
K4 as follows: v1 → v2 ← v3 → v1 ← v2 → v4 ← v1 → v3 ←

v4 → v1.

Case (b) Let k ≥ 6 and let G = Kk \M , where M is the matching of size k/2 (k should

be at least 6 so that G is not bipartite). Then G will have k vertices and k2−2k
2 edges.

Also, all the vertices of G are of even degree. Hence G has an undirected closed Eulerian
trail T. As m will be even for any value of k, by Lemma 2.2, we can find an alternating
closed Eulerian trail in D(G) and the length of this alternating closed Eulerian trail is
2(

(
k
2

) − k/2) = k2 − 2k. Regarding this as an open alternating trail, we can clearly add
one further edge to one end of it in D(G) using one edge of the matching in one direction.
Hence we will get an alternating Eulerian trail of length k2 − 2k + 1.

We know that since k colors are used to color the vertices of
−−→
APn of length n− 1, there

will be k(k − 1) ordered pairs of colors. In
−−→
APn, at each vertex there will be either two

incoming edges or two outgoing edges except for the first and the last vertex. Hence it
requires even number of ordered pairs at each vertex. There will be k − 1 ordered pairs
associated with each color. When k is even, k − 1 will be odd and hence we cannot use
k− 1 ordered pairs of one particular color. That is only k2− 2k +1 ordered pairs of colors
will be used when k is even. Hence when k is even, for an alternating path with more
than k2 − 2k + 2 vertices, we require k + 1 colors. Hence the proof.

Figures 1, 2 and 3 are the illustrative examples for the above result.

Definition 2.6. An alternating cycle
−−→
ACn with n vertices is an oriented cycle in which

all adjacent edges have opposite directions.
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4 13524514352451321321

Figure 1: Proper harmonious coloring of
−→
AP 21.

1431421321

Figure 2: Proper harmonious coloring of
−→
AP 10.

41652463165246315432154321

Figure 3: Proper harmonious coloring of
−→
AP 26.

Let
←→
Kk be a complete symmetric digraph. Then we have the following results:

Lemma 2.7. Let the alternating cycle
−−→
ACn be a subgraph of

←→
Kk of length n. Then every

vertex of
−−→
ACn in

←→
Kk has even indegree and outdegree.

Proof. Let
−−→
ACn be any alternating cycle of length n in

←→
Kk. By definition, an alternating

cycle is a cycle in which any two consecutive edges have opposite directions. Hence any
vertex of

−−→
ACn in

←→
Kk should have either two incoming edges or two outgoing edges. Hence

every vertex of
−−→
ACn will have even indegree and outdegree. Hence the proof.

Lemma 2.8. Let the alternating cycle
−−→
ACn be a subgraph of

←→
Kk. When k is odd, for

n = k(k − 1)− 2,
−−→
ACn cannot be colored with k colors and hence requires k + 1 colors.

Proof. Let us assume that k(k−1)−2 vertices can be colored with k colors. Then in
←→
Kk, the

possible degree sequence of the outgoing edges will be (k−1, k−1, . . . , (k−1)times, k−3).
Then corresponding to this degree sequence of outgoing edges, we get the degree sequence
of the incoming edges as (k − 1, k − 1, . . . , (k − 2)times, k − 2, k − 2). Hence there exists
at least two vertices having odd indegrees, a contradiction by Lemma 2.7. Thus, at least
k + 1 colors are required.

Lemma 2.9. Let
−−→
ACn be an alternating cycle with n vertices. Then when k is even,

k(k − 2) + 2 ≤ n ≤ k(k − 1) vertices cannot be colored with k colors and hence requires
k + 1 colors.

Proof. The total indegree and the total outdegree of those vertices of the alternating cycle
having any particular color must both be even (by Lemma 2.7) and so if k is even, they
cannot exceed k − 2 (as there are only k − 1 ordered pairs of one particular color). It
follows that there can be at most k(k − 2) edges in the alternating cycle with k colors.
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Hence for
−−→
ACn with n vertices , where k(k − 2) + 2 ≤ n ≤ k(k − 1), we require one more

additional color to color the vertices.

Theorem 2.10. Let
−−→
ACn be an alternating cycle with n vertices, where n is even. Then

−→χh(
−−→
ACn) =

⎧⎪⎪⎨
⎪⎪⎩

k for k =odd and n = (k − 1)(k − 2) + 2, . . . , k(k − 1)− 4, k(k − 1)
k + 1 for k =odd and n = k(k − 1)− 2
k for k =even and n = (k − 1)(k − 2) + 2, . . . , k(k − 2)
k + 1 for k =even and n = k(k − 2) + 2, k(k − 2) + 4, . . . , k(k − 1).

Proof. Since an alternating cycle
−−→
ACn contains n edges, by Proposition 1.6, we get

−→χh(
−−→
ACn) ≥ k. When −→χh(

−−→
ACn) = k, it follows that (k − 1)(k − 2) + 2 ≤ n ≤ k(k − 1).

Let G be a connected (undirected) non-bipartite graph in which every vertex has even
degree. Now, consider a complete undirected graph Kk with k vertices.

Case (i) Let k be odd.

Case (a) Let n = k(k − 1), k ≥ 3 and let G = Kk. Then G contains k(k−1)
2 edges.

Since G is non-bipartite and all the vertices are of even degree, G has an undirected closed
Eulerian trail T. Then by Lemma 2.3, we can find an alternating cycle of length n.

Case (b) Let n = (k − 1)(k − 2) + 2, · · · , k(k − 1) − 6, k ≥ 5 and let G = Kk \ Ct,

where Ct is a cycle with t vertices, t = 3, 4, · · · , k− 2. Then G has k(k−1)−2t
2 edges , where

t = 3, 4, · · · , k − 2. Also, G is non-bipartite and all the vertices of G are of even degree.
Hence G has an undirected closed Eulerian trail T. Then by Lemma 2.3, we obtain the
required alternating cycle of length n.

Case (c) Let n = k(k − 1) − 4, k ≥ 5. Let v1, v2, v3, · · · , vk be the vertices of Kk. Let

G = Kk \C4, where C4 is a cycle v1, v2, v3, v4, v1 of length 4. Then G has k(k−1)
2 −4 edges.

Also, G is non-bipartite and all the vertices of G are of even degree. Hence G has an
undirected closed Eulerian trail T. Then by Lemma 2.2, we obtain the alternating closed
Eulerian trail of length k(k−1)−8 in D(G). Now, suppose the alternating closed Eulerian
trail contains · · · → v1 ← · · · , and add in the edges v1 ← v2 → v3 ← v4 → v1. Then we
obtain the required alternating closed Eulerian trail of length k(k − 1)− 4.

Case (ii) Let k be even and let G1 = Kk \M1, where M1 is the matching of size k/2 (k
should be at least 6 so that G1 is not bipartite).

Case (a) When n = k(k−2) and k = 4, we can color the vertices of
−−→
AC8 as given below:

143

1 2

432

Figure 4: Proper harmonious coloring of
−→
AC8.
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Case (b) Let n = k(k − 2), k ≥ 6 and let G = G1. Then G is non-bipartite and all the
vertices of G are of even degree. Hence G has an undirected closed Eulerian trail T. Also
G contains k2−2k

2 edges. Then by Lemma 2.3, we obtain the required alternating cycle of
length k2 − 2k.

Case (c) Let n = (k− 1)(k− 2)+ 2, (k− 1)(k− 2)+ 4, · · · , k(k− 1)− 6, k ≥ 10 and let

G = G1 \Ct, where Ct is a cycle with t vertices, t = 3, 4, · · · , (k
2 −2). Then G has k2−2(k−t)

2

edges for t = 3, 4, · · · , (k
2 − 2). Also, G is non-bipartite and all the vertices of G are of

even degree. Hence G has an undirected closed Eulerian trail T. Then by Lemma 2.3, we
obtain the required alternating cycle of length n.

Case (d) Let n = k(k− 2)− 4, k ≥ 8 and let G2 = Kk \M2, where M2 is the matching
of size k

2 − 2 (k should be at least 6 so that G2 is not bipartite). Then G = G2 \ 2P3,
where P3 is a path of length 2 and the end vertices of both the paths are the vertices
which are not the adjacent vertices of the edges of the matching. Also, both the paths are
distinct and passes through the vertex which is incident with the edge of the matching.
The following sketch illustrates G when k = 8.

Then G has k(k−1)−k−4
2 edges. Also, G is non-bipartite and all the vertices of G are of

even degree. Hence G has an undirected closed Eulerian trail T. Then by Lemma 2.3, we
obtain the required alternating cycle of length n.

Case(e) Let n = k(k−2)−2, k ≥ 6 and let G3 = Kk \M3, where M3 is the matching of
size k

2 −1 (k should be at least 6 so that G3 is not bipartite). Then G = G3 \P3, where P3

is a path of length 2 and the end vertices of P3 are the vertices which are not the adjacent
vertices of the edges of the matching. Also, it passes through the vertex which is incident
with the edge of the matching. Consider the sketch below as an example of G for the case
when k = 6.
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Then G has k(k−1)−k−2
2 edges. Also, G is non-bipartite and all the vertices of G are of

even degree. Hence G has an undirected closed Eulerian trail T. Then by Lemma 2.3, we
obtain the required alternating alternating cycle of length n.

We can conclude the result using Lemma 2.8 and Lemma 2.9.

Figures 5 and 6 are the illustrative examples for the above result.

1

1

33524

1 1

55432

524

432

Figure 5: Proper harmonious coloring of
−→
AC20.
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44256

1 6

35432
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154
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Figure 6: Proper harmonious coloring of
−→
AC24.
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