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Abstract

We extend the applicability of Newton’s method used to approximate a so-
lution of a mapping involving Lie valued operators. Using our idea of the
restricted convergence region, we locate a more precise set containing the
Newton iterates leading to tighter majorizing sequences than before. This
way and under the same computational cost as before, we show the semi-local
convergence of Newton’s method with the following advantages over earlier
works: weaker sufficient convergence criteria, tighter error bounds on the dis-
tances involved and at least as precise information on the location of the
solution.
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1 Introduction

In this study, we are concerned with the problem of approximating a zero x? of C1-
mapping F : G −→ Q, where G is a Lie group and Q the Lie algebra of G that is
the tangent space TeG of G at e, equipped with the Lie bracket [., .] : Q×Q −→ Q
[5, 6, 7, 17, 20, 22].

The study of numerical algorithms on manifolds for solving eigenvalue or opti-
mization problems on Lie groups [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25] is very important in Computational Mathemat-
ics. Newton-type methods are the most popular iterative procedures used to solve
equations, when these equations contain differentiable operators. A local as well as
a semilocal convergence of Newton-type methods has been given by several authors
under various conditions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25]. There are two types of convergence results: the first
uses information from the domain of an operator (see the well-known Kantorovich
theorem [23]); where as the second uses information only at a point (see Smale’s
paper [25]). In particular, a convergence analysis of Newton’s method on manifolds
can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 25].

Newton’s method (NM) with initial point x0 ∈ G was first introduced by Owren
and Welfert [24] in the form

xn+1 = xn · exp (−dF−1
xn

F (xn)) (n ≥ 0). (1.1)

NM is undoubtedly the most popular method for generating a sequence {xn} ap-
proximating x?.

In this article, we are motivated by the work in [21] and optimization consider-
ations. The following advantages are obtained in the semi-local case (A1):

(i) Weaker sufficient convergence criteria and a larger convergence region.

(ii) Tighter error estimates on the distances involved;

and

(iii) An at least as precise information on location of the solution x?.

That is, the applicability of NM is extended.
The rest of the paper is structured as follows. Section 2 contains the necessary

background on Lie groups. In Section 3, we present the semi-local convergence of
NM method.

2 Background

In this section, we re-introduce standard concepts and notations from [5, 6, 17, 20,
21, 22], to make the paper as self contained as possible,.
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“A Lie group (G,·) is a Hausdorff topological group with countable bases which
also has the structure of a smooth manifold such that the group product and the
inversion are smooth operations in the differentiable structure given on the manifold.
The dimension of a Lie group is that of the underlying manifold and we shall always
assume that it is finite. The symbol e designates the identity element of G. Let Q
be the Lie algebra of the Lie group G which is the tangent space TeG of G at e,
equipped with Lie bracket [·, ·] : Q×Q → Q. In the sequel we will make use of the
left translation of the Lie group G. We define for each y ∈ G

Ly : G −→ G
z −→ y · z (2.1)

the left multiplication in the group. The differential of Ly at e denoted by (dLy)e

determines an isomorphism of Q = TeG with the tangent space TyG via the relation

(dLy)e(Q) = TyG,

or, equivalently,
Q = (dLy)−1

e (TyG) = (dLy−1)y(TyG).

The exponential map is noted by exp and defined by

exp : Q −→ G
u −→ exp(u),

which is certainly the most important construct associated to G andQ.Given u ∈ Q,
the left invariant vector field Xu : y −→ (dLy)e(u) determines an one-parameter
subgroup of G: σu : R −→ G such that

σu(0) = e and σ′
u(t) = Xu(σu(t)) = (dLσu(t))e(u) ∀ t ∈ R. (2.2)

Consequently, the exponential map is defined by the relation

exp(u) = σu(1).

Consider F : G −→ Q = TeG be a C1-mapping. The differential of F at a point
x ∈ G is a linear map F

′

x : TxG −→ Q defined by

F ′
x(4x) =

d

dt
F (x · exp(t((dLx−1)x)(4x))) |t=0 for any 4x ∈ TxG. (2.3)

The differential F ′
x can be expressed via a function dFx : Q −→ Q given by

dFx = (F ◦ Lx)′e = F ′
x ◦ (dLx)e.

Thus, by (2.3), it follows that

dFx(u) = F ′
x((dLx)e(u)) =

d

dt
F (x · exp(tu)) |t=0 for any u ∈ Q.

Therefore the following lemma is clear.
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Lemma 2.1 Let x ∈ G, u ∈ Q and t ∈ R. Then

d

dt
F (x · exp(−tu)) = −dFx·exp(−tu)(u) (2.4)

and

F (x · exp(tu)) − F (x) =
∫ t

0

dFx·exp(su)(u) ds.′′ (2.5)

3 Semi-local convergence

We shall study the semi-local convergence of NM. In the rest of the paper we assume
〈·, ·〉 the inner product and ‖ · ‖ on Q. As in [5, 6, 21, 22] we define a distance on
G for x, y ∈ G as follows:

m(x, y) = inf {
k∑

i=1

‖ zi ‖ : there exist k ≥ 1 and z1, · · · , zk ∈ Q

such that y = x · exp z1 · · ·exp zk}.
(3.1)

By convention inf ∅ = +∞. It is easy to see that m(·, ·) is a distance on G and
the topology induced is equivalent to the original one on G. Let w ∈ G and r > 0,
we denote by B(w, r) = {y ∈ G : m(w, y) < r} the open ball centered at w and
of radius r. Moreover, we denote the closure of B(w, r) by B(w, r). Let also L(Q)
denotes the set of all linear operators on Q.

Let L0, L, L1 be nondecreasing integrable functions on [0, ρ), where ρ > 0 is such
that

∫ ρ

0
(ρ − t)L0(t)dt ≥ ρ,

∫ ρ

0
(ρ − t)L(t)dt ≥ ρ and

∫ ρ

0
(ρ − t)L1(t)dt ≥ ρ. Define

parameter r by r = sup{t ≥ 0 : B(x0, r) ⊆ G}. We need the following definitions
related to functions L0, L and L1.

Definition 3.1 Let x0 ∈ G and M : G −→ L(Q). Operator M satisfies the center-
L0-Lipschitz condition on B(x0, r), if

‖M (x.exp v) −M (x0)‖ ≤
∫ d(x0,x)

0

L0(t)dt (3.2)

holds for each v, vi ∈ Q, i = 0, 1, . . .m, x ∈ B(x0, r) such that x = x0exp v1 exp v2 . . . exp vm

and d(x0, x) < r, where d(x0, x) =
∑m

i=0 ‖vi‖.

Suppose that equation ∫ ρ̄

0

L0(t)dt = 1 (3.3)

for some ρ̄ > 0 has at least one positive solution. Denoted by ρ0 the smallest such
solution. Define the set B0 by

B0 = B(x0, r0), r0 = min{r, ρ0}. (3.4)
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Definition 3.2 Let x0 ∈ G and M : G −→ L(Q). Operator M satisfies the re-
stricted L−Lipschitz condition on B0, if

‖M (x.exp v)−M (x)‖ ≤
∫ d(x0,x)+‖v‖

d(x0,x)

L(t)dt (3.5)

holds for each x ∈ B0.

Definition 3.3 [21] Let x0 ∈ G and M : G −→ L(Q). Operator M satisfies the
L1−Lipschitz condition on B(x0, r), if

‖M (x.exp v) −M (x)‖ ≤
∫ d(x0,x)+‖v‖

d(x0,x)

L1(t)dt (3.6)

holds for each x ∈ B(x0, r).

It follows from (3.2)-(3.6) that

L0(t) ≤ L1(t) (3.7)

and
L(t) ≤ L1(t). (3.8)

It is worth noticing that function L1 was used in the semi-local convergence analysis
in [21]. In the present article tighter function L shall replace L1, since the iterates
xn lie in the more precise ball B0 than B(x0, r) used in [21]. This way we obtain the
advantages as already stated in the introduction. These advantages are obtained
under the same cost, since the computation of function L1 requires the computation
of functions L0 and L as special cases. Notice that function L0 is used to define
function L, i.e., L = L(L0).

From now on, we suppose that

L0(t) ≤ L(t). (3.9)

If
L(t) ≤ L0(t), (3.10)

then function L0 can replace L in the results that follow after Lemma 3.4.
We need the auxiliary Banach-type perturbation result.

LEMMA 3.4 Let ρ ∈ (0, ρ0) and x0 ∈ G be such that dFx0
is invertible. Sup-

pose d−1
Fx0

dF satisfies the center-L0 Lipschitz condition on B(x0, ρ). Then, dFx is
invertible and

‖d−1
Fx
dFx0

d−1
Fx0

dFx0
‖ ≤ 1

1 −
∫ d(x0,x)

0
L0(t)dt

. (3.11)
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Proof. Set z0 = x0 and zi+1 = zi.exp vi for each i = 0, 1, 2, . . .k. Using (3.2) for
M = dFx0

dF , one has that

‖d−1
Fx
dFx0

d−1
Fx0

(dFzi.exp vi
− dFzi

)‖ ≤
∫ d(zi+1,x0)

d(zi ,x0)

L(t)dt for each 0 ≤ i ≤ k. (3.12)

Since zk+1 = x, we have

‖d−1
Fx
dFx0

dFx0
dFx − IG‖ = ‖d−1

Fx0
(dFyk.exp vk

− dFx0
‖

≤
k∑

i=0

‖d−1
Fx0

(dFyi.exp vi
− dFyi

‖

=
∫ d(x,x0)

0

L0(t)dt <
∫ ρ0

0

L0(t)dt = 1. (3.13)

The results follows from (3.13) and the Banach Lemma on invertible operators [23].
�

REMARK 3.5 The corresponding Lemma 2.1 in [21] arrived at the estimate

‖d−1
Fx
dFx0

d−1
Fx0

dFx0
‖ ≤

1

1 −
∫ d(x0,x)

0
L1(t)dt

(3.14)

which is less tight than (3.11) (by (3.7)).

Let

η0 =
∫ ρ

0

L0(t)tdt. (3.15)

The majorizing function ϕ shall be used. Define the majorizing function ϕ by

ϕ(t) = η − t+
∫ t

0

L(s)(t − s)ds for each t ∈ [0, ρ]. (3.16)

Some useful results are needed:

PROPOSITION 3.6 [21] The function ϕ is monotonically decreasing on [0, ρ0]
and monotonically increasing on [ρ0, ρ]. Moreover, if η ≤ η0, ϕ(t) = 0 has a unique
solution respectively in [0, ρ0] and [ρ0, ρ], which are denoted by r1 and r2.

Let {tn} denote the sequence generated by Newton’s method with initial data t0 = 0
for ϕ defined for each n = 0, 1, 2, . . . by

tn=1 = tn − ϕ′(tn)−1ϕ(tn) for each n = 0, 1, 2, . . .. (3.17)
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PROPOSITION 3.7 [21] Suppose that η ≤ η0. Then the sequence {tn} generated
by (3.17) is monotonically increasing and converges to r1.

Suppose that x0 ∈ G is such that d−1
Fx0

exists and set η := ‖d−1
Fx0

‖. Let η0 given by
(3.15) and r1 be given by Proposition 3.6.

THEOREM 3.8 Suppose that d−1
Fx0

dF satisfies the center L0−Lipschitz condition
on B0, L−Lipschitz condition on B(x0, r1) and that

η = ‖d−1
Fx0

‖ ≤ η0. (3.18)

Then, the sequence {xn} generated by NM with initial point x0 is well defined
and converges to a zero x∗ of F. Moreover, the following items hold for each
n = 0, 1, 2, . . . ;

d(xn+1, xn) ≤ ‖d−1
Fxn

F (xn)‖ ≤ tn+1 − tn; (3.19)

d(xn, x∗) ≤ r1 − tn. (3.20)

Proof. Set vn = −d−1
Fxn

F (xn) for each n = 0, 1, 2, . . .. Using induction, we shall
show that each vn is well defined and

ρ(xk+1, xk) ≤ ‖vn‖ ≤ tk+1 − tk (3.21)

holds for each n = 0, 1, 2, . . . . Then, the sequence {xk} generated by NM starting
at x0 is well defined and converges to a zero x∗ of F, since, by NM

xk+1 = xk.exp vk for each n = 0, 1, 2, . . ..

Moreover, items (3.19) and (3.20) hold for each n and the proof of the theorem is
completed.

Note that v0 is well defined by assumption and x1 = x0.exp v0.Hence, ρ(x1, x0) ≤
‖v0‖. Since ‖v0‖ = ‖ − d−1

Fx0
F (x0)‖ = η = t1 − t0, it follows that (3.17) is true for

k = 0. Suppose that vk is well defined and (3.21) holds for each n ≤ k − 1. Then

n−1∑

i=0

‖vi‖ ≤ tn − t0 = tn < r1 and xn = x0.exp v0. . . . .exp vn−1. (3.22)

By Lemma 3.4 d−1
Fxk

exists and

‖d−1
Fxk

dFx0
‖ ≤ 1

1 −
∫ 1

0
tkL0(s)ds

= −ϕ′(tk)−1. (3.23)
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Hence, vk is well defined. Using NM and (2.5), we can write

F (xk) = F (xk) − F (xk−1) − dFxk
vk−1

=
∫ 1

0

dFxk
.exp (tvk−1)vk−1dt− dFxk−1

vk−1

=
∫ 1

0

[dFxk−1
.exp (tvk−1) − dFxk−1

]vk−1dt. (3.24)

Then, using NM, (3.5), (3.23) and (3.24), we obtain in turn that

‖d−1
Fx0

F (xk)‖ ≤
∫ 1

0

‖d−1
Fx0

[dFxk−1
.exp (tvk−1) − dFxk−1

]‖‖vk−1‖dt

≤
∫ 1

0

∫ ρ(xk−1,x0)+t‖vk−1‖

ρ(xk−1,x0)

L(s)ds‖vk−1‖dt

≤
∫ 1

0

∫ tk−1+t(tk−tk−1)

tk−1

L(s)ds(tk − tk−1)dt

=
∫ tk

tk−1

L(s)(tk − s)ds

= h(tk) − h(tk−1) − ϕ′(tk−1)(tk − tk−1)
= ϕ(tk). (3.25)

By (3.23) and (3.25), we have in turn that

‖vk‖ = ‖ − d−1
Fxk

F (xk)‖

≤ ‖d−1
Fxk

dFx0
‖‖d−1

Fx0
F (xk)‖

≤ −ϕ′(tk)−1ϕ(tk)
= tk+1 − tk. (3.26)

Then, by xk+1 = xk.exp vk, we get d(xk+1, xk) ≤ ‖vk‖ which together with (3.21)
and (3.26) complete the induction.

�

REMARK 3.9 The majorizing sequence used in [21] is defined for each n =
0, 1, 2, . . . by

un+1 = un − ψ′(un)−1ψ(un), u0 = 0, (3.27)

where

ψ(t) = η − t +
∫ t

0

L1(s)(t − s)ds for each t ∈ [0, ρ] (3.28)
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and the convergence criterion corresponding to (3.20) is

η ≤ η̄0, (3.29)

where ∫ ρ̄0

0

L1(t)dt = 1 and η̄0 =
∫ ρ̄0

0

L1(t)tdt. (3.30)

Denote also by r̄1 and r̄2 the solutions of equation ψ(t) = 0 corresponding to r1 and
r2, respectively. Notice that

ϕ(t) ≤ ψ(t), (3.31)

ρ̄0 ≤ ρ0 (3.32)

and
r̄1 ≤ r1. (3.33)

It turns out that (3.18) is weaker than (3.29). As an example, suppose functions
L0, L and L1 are constants. Then, we have

ρ̄0 =
1
L1
, ρ0 =

1
L
, η̄0 =

1
2L1

and η0 =
1

2L
. (3.34)

Therefore (3.18) and (3.29) reduce respectively to the Kantorovich criteria for NM
[23]

2Lη ≤ 1 (3.35)

and
2L1η ≤ 1. (3.36)

Then, in this case since L ≤ L1, we have

2L1η ≤ 1 =⇒ 2Lη ≤ 1 (3.37)

but not necessarily vice versa unless, if L = L1. It follows from (3.25) that sequence
{sn} defined for each n = 0, 1, 2, . . . by

s0 = 0, s1 = η,

sn+2 = sn=1 + ϕ̄′
0(sn)−1

∫ sn

sn−1

L(t)(sn − t)dt (3.38)

is also a majorizing sequence which converges to s∗ = r1 (under (3.18)), where

ϕ̄0(t) = η − t +
∫ t

0

L0(s)(t − s)ds. (3.39)

Moreover, we have
0 ≤ sn ≤ tn for each n = 0, 1, 2, . . ., (3.40)
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0 ≤ sn+2 − sn+1 ≤ tn+2 − tn+1 for each n = 0, 1, 2, . . . , (3.41)

and
s∗ = lim

n−→∞
sn ≤ r1 = lim

n−→∞
. (3.42)

Hence, tighter sequence {sn} can replace {tn} in Theorem 3.8 (under (3.18)). It
turns out that sequence {sn} can converge under weaker than (3.35) criteria. We
refer the reader to our work in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for such
criteria. The same advantages are obtained, if we specialize the “L” functions to
“gamma” functions [21]. Our new technique of the restricted convergence region can
be used to other iterative methods. Examples where (3.9) and (3.11) hold as strict
inequalities can be found in [11, 12, 13, 14, 15]. The local convergence analysis can
be improved along the same lines (see also [5, 12, 13, 14, 15]).
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