Communications on Applied Nonlinear Analysis Volume 26(2019), Number 2, 91 - 102

Extended Semi-local Convergence of Newton's Method on Lie Groups Using Restricted Regions

> Ioannis K. Argyros Cameron University Department of Mathematical Sciences Lawton, OK 73505 iargyros@cameron.edu

Santhosh George National Institute of Technology Karnataka Department of Math. & Computational Sciences India 575 025 sgeorge@nitk.edu.in

Communicated by Ram U. Verma

(Received March 12, 2019; Revised Version Accepted March 25, 2019) www.internationalpubls.com

Abstract

We extend the applicability of Newton's method used to approximate a solution of a mapping involving Lie valued operators. Using our idea of the restricted convergence region, we locate a more precise set containing the Newton iterates leading to tighter majorizing sequences than before. This way and under the same computational cost as before, we show the semi-local convergence of Newton's method with the following advantages over earlier works: weaker sufficient convergence criteria, tighter error bounds on the distances involved and at least as precise information on the location of the solution.

AMS Subject Classification: 65G99, 65J15, 47H17, 49M15, 90C90

Key words: Newton's method, Lie group, Lie algebra, Riemannian manifold, semi-local convergence, majorizing sequence, Kantorovich hypothesis.

1 Introduction

In this study, we are concerned with the problem of approximating a zero x_{\star} of \mathcal{C}^{1-} mapping $F : G \longrightarrow Q$, where G is a Lie group and Q the Lie algebra of G that is the tangent space $T_e G$ of G at e, equipped with the Lie bracket $[.,.] : Q \times Q \longrightarrow Q$ [5, 6, 7, 17, 20, 22].

The study of numerical algorithms on manifolds for solving eigenvalue or optimization problems on Lie groups [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] is very important in Computational Mathematics. Newton-type methods are the most popular iterative procedures used to solve equations, when these equations contain differentiable operators. A local as well as a semilocal convergence of Newton-type methods has been given by several authors under various conditions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. There are two types of convergence results: the first uses information from the domain of an operator (see the well-known Kantorovich theorem [23]); where as the second uses information only at a point (see Smale's paper [25]). In particular, a convergence analysis of Newton's method on manifolds can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 25].

Newton's method (NM) with initial point $x_0 \in G$ was first introduced by Owren and Welfert [24] in the form

$$x_{n+1} = x_n \cdot \exp\left(-dF_{x_n}^{-1}F(x_n)\right) \quad (n \ge 0).$$
(1.1)

NM is undoubtedly the most popular method for generating a sequence $\{x_n\}$ approximating x_{\star} .

In this article, we are motivated by the work in [21] and optimization considerations. The following advantages are obtained in the semi-local case (\mathcal{A}_1) :

- (i) Weaker sufficient convergence criteria and a larger convergence region.
- (ii) Tighter error estimates on the distances involved;

and

(iii) An at least as precise information on location of the solution x_{\star} .

That is, the applicability of NM is extended.

The rest of the paper is structured as follows. Section 2 contains the necessary background on Lie groups. In Section 3, we present the semi-local convergence of NM method.

2 Background

In this section, we re-introduce standard concepts and notations from [5, 6, 17, 20, 21, 22], to make the paper as self contained as possible,.

"A Lie group (G, \cdot) is a Hausdorff topological group with countable bases which also has the structure of a smooth manifold such that the group product and the inversion are smooth operations in the differentiable structure given on the manifold. The dimension of a Lie group is that of the underlying manifold and we shall always assume that it is finite. The symbol e designates the identity element of G. Let Qbe the Lie algebra of the Lie group G which is the tangent space T_eG of G at e, equipped with Lie bracket $[\cdot, \cdot] : Q \times Q \to Q$. In the sequel we will make use of the left translation of the Lie group G. We define for each $y \in G$

the left multiplication in the group. The differential of L_y at e denoted by $(dL_y)_e$ determines an isomorphism of $Q = T_e G$ with the tangent space $T_y G$ via the relation

$$(dL_y)_e(Q) = T_y G,$$

or, equivalently,

$$Q = (dL_y)_e^{-1}(T_yG) = (dL_{y-1})_y(T_yG).$$

The exponential map is noted by exp and defined by

$$\begin{array}{rccc} \exp: Q & \longrightarrow & G \\ u & \longrightarrow & \exp(u). \end{array}$$

which is certainly the most important construct associated to G and Q. Given $u \in Q$, the left invariant vector field $X_u : y \longrightarrow (dL_y)_e(u)$ determines an one-parameter subgroup of $G: \sigma_u : \mathbb{R} \longrightarrow G$ such that

$$\sigma_u(0) = e \quad and \quad \sigma'_u(t) = X_u(\sigma_u(t)) = (dL_{\sigma_u(t)})_e(u) \quad \forall t \in \mathbb{R}.$$
(2.2)

Consequently, the exponential map is defined by the relation

$$\exp(u) = \sigma_u(1).$$

Consider $F : G \longrightarrow Q = T_e G$ be a C^1 -mapping. The differential of F at a point $x \in G$ is a linear map $F'_x : T_x G \longrightarrow Q$ defined by

$$F'_{x}(\Delta_{x}) = \frac{d}{dt}F(x \cdot \exp(t((dL_{x-1})_{x})(\Delta_{x})))|_{t=0} \text{ for any } \Delta_{x} \in T_{x}G.$$
(2.3)

The differential F'_x can be expressed via a function $dF_x : Q \longrightarrow Q$ given by

$$dF_x = (F \circ L_x)'_e = F'_x \circ (dL_x)_e.$$

Thus, by (2.3), it follows that

$$dF_x(u) = F'_x((dL_x)_e(u)) = \frac{d}{dt}F(x \cdot \exp(tu))|_{t=0} \text{ for any } u \in Q$$

Therefore the following lemma is clear.

Lemma 2.1 Let $x \in G$, $u \in Q$ and $t \in \mathbb{R}$. Then

$$\frac{d}{dt}F(x \cdot \exp(-tu)) = -dF_{x \cdot \exp(-tu)}(u)$$
(2.4)

and

$$F(x \cdot \exp(tu)) - F(x) = \int_0^t dF_{x \cdot \exp(su)}(u) \, ds.''$$
(2.5)

3 Semi-local convergence

We shall study the semi-local convergence of NM. In the rest of the paper we assume $\langle \cdot, \cdot \rangle$ the inner product and $\|\cdot\|$ on Q. As in [5, 6, 21, 22] we define a distance on G for $x, y \in G$ as follows:

$$m(x,y) = \inf \{ \sum_{i=1}^{k} || z_i ||: \text{ there exist } k \ge 1 \text{ and } z_1, \cdots, z_k \in Q \quad (3.1) \text{ such that } y = x \cdot \exp z_1 \cdots \exp z_k \}.$$

By convention $\inf \emptyset = +\infty$. It is easy to see that $m(\cdot, \cdot)$ is a distance on G and the topology induced is equivalent to the original one on G. Let $w \in G$ and r > 0, we denote by $B(w,r) = \{y \in G : m(w,y) < r\}$ the open ball centered at w and of radius r. Moreover, we denote the closure of B(w,r) by $\overline{B}(w,r)$. Let also L(Q) denotes the set of all linear operators on Q.

Let L_0, L, L_1 be nondecreasing integrable functions on $[0, \rho)$, where $\rho > 0$ is such that $\int_0^{\rho} (\rho - t) L_0(t) dt \ge \rho$, $\int_0^{\rho} (\rho - t) L(t) dt \ge \rho$ and $\int_0^{\rho} (\rho - t) L_1(t) dt \ge \rho$. Define parameter r by $r = \sup\{t \ge 0 : B(x_0, r) \subseteq G\}$. We need the following definitions related to functions L_0, L and L_1 .

Definition 3.1 Let $x_0 \in G$ and $M : G \longrightarrow L(Q)$. Operator M satisfies the center- L_0 -Lipschitz condition on $B(x_0, r)$, if

$$\|M(x.exp\,v) - M(x_0)\| \le \int_0^{d(x_0,x)} L_0(t)dt \tag{3.2}$$

holds for each $v, v_i \in Q, i = 0, 1, ..., m, x \in B(x_0, r)$ such that $x = x_0 exp v_1 exp v_2 ... exp v_m$ and $d(x_0, x) < r$, where $d(x_0, x) = \sum_{i=0}^m \|v_i\|$.

Suppose that equation

$$\int_{0}^{\bar{\rho}} L_0(t) dt = 1$$
 (3.3)

for some $\bar{\rho} > 0$ has at least one positive solution. Denoted by ρ_0 the smallest such solution. Define the set B_0 by

$$B_0 = B(x_0, r_0), r_0 = \min\{r, \rho_0\}.$$
(3.4)

94

Extended Semi-local Convergence

Definition 3.2 Let $x_0 \in G$ and $M : G \longrightarrow L(Q)$. Operator M satisfies the restricted L-Lipschitz condition on B_0 , if

$$\|M(x.exp\,v) - M(x)\| \le \int_{d(x_0,x)}^{d(x_0,x) + \|v\|} L(t)dt \tag{3.5}$$

holds for each $x \in B_0$.

Definition 3.3 [21] Let $x_0 \in G$ and $M : G \longrightarrow L(Q)$. Operator M satisfies the L_1 -Lipschitz condition on $B(x_0, r)$, if

$$\|M(x.exp\,v) - M(x)\| \le \int_{d(x_0,x)}^{d(x_0,x) + \|v\|} L_1(t)dt \tag{3.6}$$

holds for each $x \in B(x_0, r)$.

It follows from (3.2)-(3.6) that

$$L_0(t) \le L_1(t) \tag{3.7}$$

and

$$L(t) \le L_1(t). \tag{3.8}$$

It is worth noticing that function L_1 was used in the semi-local convergence analysis in [21]. In the present article tighter function L shall replace L_1 , since the iterates x_n lie in the more precise ball B_0 than $B(x_0, r)$ used in [21]. This way we obtain the advantages as already stated in the introduction. These advantages are obtained under the same cost, since the computation of function L_1 requires the computation of functions L_0 and L as special cases. Notice that function L_0 is used to define function L, i.e., $L = L(L_0)$.

From now on, we suppose that

$$L_0(t) \le L(t). \tag{3.9}$$

If

$$L(t) \le L_0(t),\tag{3.10}$$

then function L_0 can replace L in the results that follow after Lemma 3.4.

We need the auxiliary Banach-type perturbation result.

LEMMA 3.4 Let $\rho \in (0, \rho_0)$ and $x_0 \in G$ be such that $d_{F_{x_0}}$ is invertible. Suppose $d_{F_{x_0}}^{-1} d_F$ satisfies the center- L_0 Lipschitz condition on $B(x_0, \rho)$. Then, d_{F_x} is invertible and

$$\|d_{F_x}^{-1}d_{F_{x_0}}d_{F_{x_0}}^{-1}d_{F_{x_0}}\| \le \frac{1}{1 - \int_0^{d(x_0,x)} L_0(t)dt}.$$
(3.11)

Proof. Set $z_0 = x_0$ and $z_{i+1} = z_i . exp v_i$ for each i = 0, 1, 2, ..., k. Using (3.2) for $M = d_{F_{x_0}} d_F$, one has that

$$\|d_{F_x}^{-1} d_{F_{x_0}} d_{F_{x_0}}^{-1} (d_{F_{z_i \cdot exp \, v_i}} - d_{F_{z_i}})\| \le \int_{d(z_i, x_0)}^{d(z_{i+1}, x_0)} L(t) dt \text{ for each } 0 \le i \le k.$$
(3.12)

Since $z_{k+1} = x$, we have

$$\begin{aligned} \|d_{F_x}^{-1} d_{F_{x_0}} d_{F_{x_0}} d_{F_x} - I_G\| &= \|d_{F_{x_0}}^{-1} (d_{F_{y_k,exp\,v_k}} - d_{F_{x_0}}\| \\ &\leq \sum_{i=0}^k \|d_{F_{x_0}}^{-1} (d_{F_{y_i,exp\,v_i}} - d_{F_{y_i}}\| \\ &= \int_0^{d(x,x_0)} L_0(t) dt < \int_0^{\rho_0} L_0(t) dt = 1. \end{aligned}$$
(3.13)

The results follows from (3.13) and the Banach Lemma on invertible operators [23]. $\hfill \square$

REMARK 3.5 The corresponding Lemma 2.1 in [21] arrived at the estimate

$$\|d_{F_x}^{-1}d_{F_{x_0}}d_{F_{x_0}}^{-1}d_{F_{x_0}}\| \le \frac{1}{1 - \int_0^{d(x_0,x)} L_1(t)dt}$$
(3.14)

which is less tight than (3.11) (by (3.7)).

Let

$$\eta_0 = \int_0^{\rho} L_0(t) t dt.$$
 (3.15)

The majorizing function φ shall be used. Define the majorizing function φ by

$$\varphi(t) = \eta - t + \int_0^t L(s)(t-s)ds \text{ for each } t \in [0,\rho].$$
(3.16)

Some useful results are needed:

PROPOSITION 3.6 [21] The function φ is monotonically decreasing on $[0, \rho_0]$ and monotonically increasing on $[\rho_0, \rho]$. Moreover, if $\eta \leq \eta_0, \varphi(t) = 0$ has a unique solution respectively in $[0, \rho_0]$ and $[\rho_0, \rho]$, which are denoted by r_1 and r_2 .

Let $\{t_n\}$ denote the sequence generated by Newton's method with initial data $t_0 = 0$ for φ defined for each n = 0, 1, 2, ... by

$$t_{n=1} = t_n - \varphi'(t_n)^{-1}\varphi(t_n)$$
 for each $n = 0, 1, 2, \dots$ (3.17)

PROPOSITION 3.7 [21] Suppose that $\eta \leq \eta_0$. Then the sequence $\{t_n\}$ generated by (3.17) is monotonically increasing and converges to r_1 .

Suppose that $x_0 \in G$ is such that $d_{F_{x_0}}^{-1}$ exists and set $\eta := \|d_{F_{x_0}}^{-1}\|$. Let η_0 given by (3.15) and r_1 be given by Proposition 3.6.

THEOREM 3.8 Suppose that $d_{F_{x_0}}^{-1} d_F$ satisfies the center L_0 -Lipschitz condition on B_0 , L-Lipschitz condition on $B(x_0, r_1)$ and that

$$\eta = \|d_{F_{x_0}}^{-1}\| \le \eta_0. \tag{3.18}$$

Then, the sequence $\{x_n\}$ generated by NM with initial point x_0 is well defined and converges to a zero x_* of F. Moreover, the following items hold for each n = 0, 1, 2, ...;

$$d(x_{n+1}, x_n) \le \|d_{F_{x_n}}^{-1} F(x_n)\| \le t_{n+1} - t_n;$$
(3.19)

$$d(x_n, x_*) \le r_1 - t_n. \tag{3.20}$$

Proof. Set $v_n = -d_{F_{x_n}}^{-1} F(x_n)$ for each $n = 0, 1, 2, \ldots$ Using induction, we shall show that each v_n is well defined and

$$\rho(x_{k+1}, x_k) \le \|v_n\| \le t_{k+1} - t_k \tag{3.21}$$

holds for each n = 0, 1, 2, ... Then, the sequence $\{x_k\}$ generated by NM starting at x_0 is well defined and converges to a zero x_* of F, since, by NM

$$x_{k+1} = x_k . exp v_k$$
 for each $n = 0, 1, 2, ...$

Moreover, items (3.19) and (3.20) hold for each n and the proof of the theorem is completed.

Note that v_0 is well defined by assumption and $x_1 = x_0 \cdot exp v_0$. Hence, $\rho(x_1, x_0) \leq ||v_0||$. Since $||v_0|| = || - d_{F_{x_0}}^{-1} F(x_0)|| = \eta = t_1 - t_0$, it follows that (3.17) is true for k = 0. Suppose that v_k is well defined and (3.21) holds for each $n \leq k - 1$. Then

$$\sum_{i=0}^{n-1} \|v_i\| \le t_n - t_0 = t_n < r_1 \text{ and } x_n = x_0 . exp \, v_0 . \dots . exp \, v_{n-1}.$$
(3.22)

By Lemma 3.4 $d_{F_{x_h}}^{-1}$ exists and

$$\|d_{F_{x_k}}^{-1}d_{F_{x_0}}\| \le \frac{1}{1 - \int_0^1 t_k L_0(s)ds} = -\varphi'(t_k)^{-1}.$$
(3.23)

Hence, v_k is well defined. Using NM and (2.5), we can write

$$F(x_k) = F(x_k) - F(x_{k-1}) - d_{F_{x_k}} v_{k-1}$$

= $\int_0^1 d_{F_{x_k}} \cdot exp(tv_{k-1}) v_{k-1} dt - d_{F_{x_{k-1}}} v_{k-1}$
= $\int_0^1 [d_{F_{x_{k-1}}} \cdot exp(tv_{k-1}) - d_{F_{x_{k-1}}}] v_{k-1} dt.$ (3.24)

Then, using NM, (3.5), (3.23) and (3.24), we obtain in turn that

$$\begin{aligned} \|d_{F_{x_0}}^{-1}F(x_k)\| &\leq \int_0^1 \|d_{F_{x_0}}^{-1}[d_{F_{x_{k-1}}}.exp(tv_{k-1}) - d_{F_{x_{k-1}}}]\| \|v_{k-1}\| dt \\ &\leq \int_0^1 \int_{\rho(x_{k-1},x_0)}^{\rho(x_{k-1},x_0)+t\|v_{k-1}\|} L(s)ds\|v_{k-1}\| dt \\ &\leq \int_0^1 \int_{t_{k-1}}^{t_{k-1}+t(t_k-t_{k-1})} L(s)ds(t_k-t_{k-1}) dt \\ &= \int_{t_{k-1}}^{t_k} L(s)(t_k-s)ds \\ &= h(t_k) - h(t_{k-1}) - \varphi'(t_{k-1})(t_k-t_{k-1}) \\ &= \varphi(t_k). \end{aligned}$$
(3.25)

By (3.23) and (3.25), we have in turn that

$$\begin{aligned} \|v_{k}\| &= \| - d_{F_{x_{k}}}^{-1} F(x_{k}) \| \\ &\leq \| d_{F_{x_{k}}}^{-1} d_{F_{x_{0}}} \| \| d_{F_{x_{0}}}^{-1} F(x_{k}) \| \\ &\leq -\varphi'(t_{k})^{-1} \varphi(t_{k}) \\ &= t_{k+1} - t_{k}. \end{aligned}$$
(3.26)

Then, by $x_{k+1} = x_k exp v_k$, we get $d(x_{k+1}, x_k) \leq ||v_k||$ which together with (3.21) and (3.26) complete the induction.

REMARK 3.9 The majorizing sequence used in [21] is defined for each n = 0, 1, 2, ... by

$$u_{n+1} = u_n - \psi'(u_n)^{-1}\psi(u_n), \ u_0 = 0, \tag{3.27}$$

where

$$\psi(t) = \eta - t + \int_0^t L_1(s)(t-s)ds \text{ for each } t \in [0,\rho]$$
(3.28)

and the convergence criterion corresponding to (3.20) is

$$\eta \le \bar{\eta}_0,\tag{3.29}$$

where

$$\int_{0}^{\bar{\rho}_{0}} L_{1}(t)dt = 1 \text{ and } \bar{\eta}_{0} = \int_{0}^{\bar{\rho}_{0}} L_{1}(t)tdt.$$
(3.30)

Denote also by \bar{r}_1 and \bar{r}_2 the solutions of equation $\psi(t) = 0$ corresponding to r_1 and r_2 , respectively. Notice that

$$\varphi(t) \le \psi(t), \tag{3.31}$$

$$\bar{\rho}_0 \le \rho_0 \tag{3.32}$$

and

$$\bar{r}_1 \le r_1. \tag{3.33}$$

It turns out that (3.18) is weaker than (3.29). As an example, suppose functions L_0, L and L_1 are constants. Then, we have

$$\bar{\rho}_0 = \frac{1}{L_1}, \rho_0 = \frac{1}{L}, \ \bar{\eta}_0 = \frac{1}{2L_1} \text{ and } \eta_0 = \frac{1}{2L}.$$
 (3.34)

Therefore (3.18) and (3.29) reduce respectively to the Kantorovich criteria for NM [23]

$$2L\eta \le 1 \tag{3.35}$$

and

$$2L_1\eta \le 1. \tag{3.36}$$

Then, in this case since $L \leq L_1$, we have

$$2L_1\eta \le 1 \Longrightarrow 2L\eta \le 1 \tag{3.37}$$

but not necessarily vice versa unless, if $L = L_1$. It follows from (3.25) that sequence $\{s_n\}$ defined for each n = 0, 1, 2, ... by

$$s_0 = 0, s_1 = \eta,$$

$$s_{n+2} = s_{n=1} + \bar{\varphi}'_0(s_n)^{-1} \int_{s_{n-1}}^{s_n} L(t)(s_n - t)dt \qquad (3.38)$$

is also a majorizing sequence which converges to $s_* = r_1$ (under (3.18)), where

$$\bar{\varphi}_0(t) = \eta - t + \int_0^t L_0(s)(t-s)ds.$$
(3.39)

Moreover, we have

$$0 \le s_n \le t_n \text{ for each } n = 0, 1, 2, \dots,$$
 (3.40)

I. K. Argyros and S. George

$$0 \le s_{n+2} - s_{n+1} \le t_{n+2} - t_{n+1} \text{ for each } n = 0, 1, 2, \dots,$$
(3.41)

and

$$s_* = \lim_{n \to \infty} s_n \le r_1 = \lim_{n \to \infty} . \tag{3.42}$$

Hence, tighter sequence $\{s_n\}$ can replace $\{t_n\}$ in Theorem 3.8 (under (3.18)). It turns out that sequence $\{s_n\}$ can converge under weaker than (3.35) criteria. We refer the reader to our work in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for such criteria. The same advantages are obtained, if we specialize the "L" functions to "gamma" functions [21]. Our new technique of the restricted convergence region can be used to other iterative methods. Examples where (3.9) and (3.11) hold as strict inequalities can be found in [11, 12, 13, 14, 15]. The local convergence analysis can be improved along the same lines (see also [5, 12, 13, 14, 15]).

References

- P. A. Absil, C. G. Baker and K. A. Gallivan, Trust-region methods on Riemannian manifolds, *Found. Comput. Math.* 7 (2007), 303 - 330.
- [2] R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, *IMA J. Numer. Anal.* 22 (2002), 359 - 390.
- [3] F. Alvarez, J. Bolte and J. Munier, A unifying local convergence result for Newton's method in Riemannian manifolds, *Found. Comput. Math.* 8 (2008), 197 - 226.
- [4] I. K. Argyros, An improved unifying convergence analysis of Newton's method in Riemannian manifolds, J. Appl. Math. Comput. 25 (2007), 345 - 351.
- [5] I. K. Argyros, On the local convergence of Newton's method on Lie groups, *PanAmerican Math. J.* 17 (2007), 101 - 109.
- [6] I. K. Argyros, A Kantorovich analysis of Newton's method on Lie groups, J. Concrete Appl. Anal. 6 (2008), 21 - 32.
- [7] I. K. Argyros, Convergence and Applications of Newton-type Iterations, Springer Verlag Publ., New York, 2008.
- [8] I. K. Argyros, Newton's method in Riemannian manifolds, *Rev. Anal. Numér.* Théor. Approx. 37 (2008), 119 - 125.
- [9] I. K. Argyros, Newton's method on Lie groups, J. Appl. Math. Comput. 31 (2009), 217 - 228.

- [10] I. K. Argyros and S. Hilout, Newton's method for approximating zeros of vector fields on Riemannian manifolds, J. Appl. Math. Comput. 29 (2009), 417 - 427.
- [11] I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012), 364 - 387.
- [12] I. K. Argyros and A. A. Magreñán, Iterative Methods and Their Dynamics with Applications, CRC Press, New York, USA, 2017.
- [13] I. K. Argyros and A. A. Magréñan, A Contemporary Study of Iterative Methods, Elsevier (Academic Press), New York, 2018.
- [14] I. K. Argyros, S. George and N. Thapa, Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications, Volume I, Nova Publishes, NY, 2018.
- [15] I. K. Argyros, S. George and N. Thapa, Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications, Volume II, Nova Publishes, NY, 2018.
- [16] J. P. Dedieu, P. Priouret and G. Malajovich, Newton's method on Riemannian manifolds: Convariant α theory, *IMA J. Numer. Anal.* **23** (2003), 395 419.
- [17] M. P. Do Carmo, Riemannian Geometry, Boston, Birkhauser, 1992.
- [18] O. P. Ferreira and B. F. Svaiter, Kantorovich's theorem on Newton's method in Reimannian manifolds, J. Complexity 18 (2002), 304 - 329.
- [19] J. M. Gutiérrez and M. A. Hernández, Newton's method under weak Kantorovich conditions, IMA J. Numer. Anal. 20 (2000), 521 - 532.
- [20] B. C. Hall, Lie groups, Lie algebras and Representations: An elementary introduction, Graduate Texts in Mathematics, 222, Springer-Verlag, New York, 2003.
- [21] J. He, J. Wang and J. Yao, Convergence criteria of Newton's method on Lie groups, *Fixed point Theory and Applications* 293 (2013), 1 - 15.
- [22] S. Helgason, Differential geometry, Lie Groups and Symmetric Spaces, Pure and Applied Mathematics, 80, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, New York-London, 1978.
- [23] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, New York, 1982.
- [24] B. Owren and B. Welfert, The Newton iteration on Lie groups, BIT 40 (2000), 121 - 145.

 S. Smale, Newton's method estimates from data at a point, The merging of disciplines: New directions in Pure, Applied and Computational Mathematics, R. Ewing, K. Gross and C. Martin eds, New-York, Springer Verlag Publ., (1986), 185 - 196.

102