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Abstract The batch bioreduction of Cr(VI) by the
cells of newly isolated chromium-resistant Acineto-
bacter sp. bacteria, immobilized on glass beads and
Ca-alginate beads, was investigated. The rate of
reduction and percentage reduction of Cr(VI)
decrease with the increase in initial Cr(VI) concen-
tration, indicating the inhibitory effect of Cr(VI).
Efficiency of bioreduction can be improved by
increasing the bioparticle loading or the initial
biomass loading. Glass bioparticles have shown
better performance as compared to Ca-alginate
bioparticles in terms of batch Cr(VI) reduction
achieved and the rate of reduction. Glass beads
may be considered as better cell carrier particles for
immobilization as compared to Ca-alginate beads.
Around 90% reduction of 80 ppm Cr(VI) could be
achieved after 24 h with initial biomass loading of
14.6 mg on glass beads. Artificial neural network-
based models are developed for prediction of batch
Cr(VI) bioreduction using the cells immobilized on
glass and Ca-alginate beads.
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1 Introduction

Chromium is a transition metal most commonly found
in the environment in its trivalent [Cr(III)] and
hexavalent [Cr(VI)] forms (James and Bartlett
1983). Naturally occurring Cr is almost exclusive in
the trivalent state, as the energy required for its
oxidation is high. Industrial processes release chro-
mium in its most dangerous hexavalent form. Hex-
avalent chromium is highly water soluble and can be
carcinogenic to both plants and animals (Venitt and
Levy 1974). The Cr(VI) salts can easily penetrate into
the circulation system through lung, infiltrate cells,
complex with macromolecules and eventually form
the carcinogen (O’Brien et al. 2003; Shakoori et al.
2004). If untreated water is discharged into the water
bodies, it adversely affects the aquatic ecosystem and
its inhabitants (Trumble and Jensen 2004).

The maximum levels permitted for trivalent chro-
mium in wastewater is 5 ppm. According to Indian
standards (Baral et al. 2006), the permissible limits of
Cr(VI) are 0.05 and 0.1 ppm for potable and industrial
discharge water, respectively. In order to comply with
this limit, it is essential that industries treat their
effluents to reduce the Cr(VI) to acceptable levels.
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Though physical and chemical remediation pro-
cesses are available to ameliorate the effect of this
hexavalent chromium in water, they are either
inefficient or suffer from high capital and operating
costs (Poopal and Laxman 2008). Owing to the
operational difficulties and treatment expenditure of
removing Cr from water in developing countries, the
above methods were found unaffordable for large scale
treatment of wastewater rich in Cr(VI) (Devaprasath et
al. 2007). The use of biological methods to remediate
metal contaminated wastewater is an emerging field
in environmental technology. Bioreduction and bio-
sorption of Cr(VI) using bacterial, fungal, yeast or
plant biomass are among the most lucrative strategies
currently employed for removal of chromium by
biological means (Kinnari et al. 2010).

The complex structure of microorganisms implies
that there are many ways for the metal to be taken up
by the cell. The complete mechanism of metal take up
is not fully understood. They may be metabolism-
dependent or metabolism-independent (Ahalya et al.
2003). In the case of Cr(VI), certain species of
bacteria were found to reduce Cr(VI) to a less toxic
Cr (III) form. Recently, many researchers discovered
the potential of using Cr(VI)-reducing bacterial strains
for detoxifying Cr(VI) contaminated environments
(Lovley 1995; Cervantes et al. 2001; Basu et al. 1997;
Shakoori et al. 2000; Francisco et al. 2002; Raicevic
et al. 2010; Kinnari et al. 2010). This offers an
attractive option for the removal and recovery of
chromium ions from wastewater.

Bacteria may be used in suspended cell or
immobilized cell systems for bioremediation of
wastewater. Generally, batch or continuous stirred
tank reactors with suspended cells are utilized in the
Cr(VI) removal studies. The advantage of these
reactors is that operation and control are simple. It is
vulnerable to shock and washout and it takes a long
time to recover from perturbation (Kim et al. 2002).
On the other hand, attached growth or immobilized
cell bioreactors may be used to overcome most of the
problems encountered in suspended cells bioreactors.
Use of immobilized cells is gaining a lot of
importance, due to several advantages it has over the
free cell (suspended cell) systems, such as no cell
wash out problems, high biomass loading, resistance
to toxic shock loading and no necessity of sludge
separation unit (Shetty et al. 2007). Immobilization
may also provide favorable microenvironmental

conditions (i.e., cell–cell contact, nutrient–product
gradients and pH gradients) for cells, resulting in
better performance of the biocatalysts. In some cases,
immobilization improves genetic stability. For some
cells, protection against shear damage is important
(Shuler and Kargi 1992). Meyer and Wallis (1997),
in a study on treatment of heavy metal containing
effluents, reported that metal uptake by biofilms was,
on an average, 17 times better than that by the free
living cultures. For the removal of Cr(VI), Morales et
al. (2007) found that Streptomyces, in the form of
biofilm, was a promising candidate for detoxification
of metal contaminated sites. Li et al. (2005) found that
immobilized cells of Micrococcus roseus in porous
spherical beads exhibited an excellent tolerance to pH
and temperature changes and were also more resistant
to heavy metal stress compared with free cells.

Several natural and synthetic support materials
such as agar, alginate, carrageenan, cellulose, and its
derivatives like collagen, gelatin, polyacrylamide,
polyester, polystyrene, and polyurethane have been
used for cell immobilization (Munjal and Sawhney
2002). Dermou et al. (2007) studied Cr(VI) removal
in trickling filters using plastic media and calcitic
gravel as cell supports. There are reports on the
efficient use of glass beads for cell immobilization
(Shetty et al. 2007).

Cr(VI) removal using immobilized cells have
been previously reported by many authors. Immo-
bilized cells of Microbacterium liquefaciens MP30
(Pattanapipitpasal et al. 2001), Bacillus sp. ES 29
(Camargo et al. 2004), Serratia marcescens as a
stable biofilm (Bruijn and Mondaca 2000), Pseudo-
monas (Konovalova et al. 2003), Desulfovibrio
vulgaris (Humphries et al. 2006), Intrasporangium
sp. strain Q5-1 (Yang et al. 2009), and Bacillus sp.
(Kathiravan et al. 2010) are known for Cr(VI) removal.

With this background, the present study was
undertaken to evaluate the hexavalent chromium
reduction ability of a laboratory isolate of Acineto-
bacter sp. immobilized on two different types of
carrier material like glass beads and calcium alginate
(Ca-alginate) beads to remove Cr(VI) from water.
This study is important with a view of selection of
suitable carrier material for the selected strain of
bacteria to be utilized in large scale industrial
bioreactors like packed bed or fluidized bed bioreac-
tors for the removal of Cr(VI) from industrial
effluents.
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Biological processes are both time variant and
nonlinear in nature, and their complexity can
be understood as the composition of many different
and interacting elements governed by nondetermin-
istic rules and influenced by external factors
(Coruzzi et al. 2009; Gago et al. 2010). It is
important to point out that many times the behavior
of a biological system over a time period is difficult to
understand and interpret, and additionally, genetic and
environmental factors show a very high degree of
intra- and interindividual variability, yielding a wide
spectrum of biological responses (Karim et al. 1997;
Guegan et al. 1998). Bioprocesses are typical multiple
input multiple output (MIMO), unstructured and
nonlinear systems, which are not easy to model
(Shetty et al. 2008).

The artificial neural network (ANN) modeling
technique is a true multiple input multiple output
(MIMO) algorithm that has the ability to mimic the
human learning process and can store large amounts
of information through knowledge indexing. The
artificial neural network’s ability to recognize and
reproduce cause and effect relationships through
training, for multiple input/output systems makes it
efficient to represent even the most complex systems
(Aleboyeh et al. 2008). Prediction with ANN is made
by learning experimentally generated data or using
validated models (Fagundes-Klen et al. 2007). The
main appeal of ANNs is that they offer the potential
of a generic approach to the modeling of nonlinear
systems.

Because of their reliable, robust and salient
characteristics in capturing the nonlinear relationships
existing between variables (multiinput/output) in
complex systems, ANN models have been success-
fully used to predict the performance of bioprocesses
(Baughman and Liu 1995; Syu and Hou 1996;
Teissier et al. 1996; Massimo et al. 1991; Chen et
al. 2004; Boareto et al. 2007; Shetty et al. 2008).
Batch reduction of Cr(VI) by using immobilized
bacteria is influenced by several factors, and as any
other biological process, it is nonlinear in nature.
So for accurate prediction of batch reduction
efficiency as a function of different factors, ANN
model can prove to be satisfactory. So in the
present study, ANN models have been developed
to predict the batch biological reduction of Cr(VI)
by the cells immobilized on different support
materials.

2 Material and Methods

2.1 Bacterial Source

The bacteria used in the present study for Cr(VI)
reduction was isolated from the aerator liquid of an
activated sludge process in the effluent treatment
facility of a nearby dye/pigment-based specialty
chemical industry and was identified as Acinetobacter
sp. by partial 16sRNA sequencing (GenBank (NCBI)
accession number: JF461086). The bacteria had a
minimum inhibitory concentration (MIC) of
1,100 ppm. The bacteria were subcultured on Nutrient
Agar every 15 days and stored at 4°C.

2.2 Biomass Production

Chromium reducing bacteria was grown in nutrient
broth (pH: 7) supplemented with 200 ppm Cr(VI).
Twenty-four-hour old cell culture was used for
immobilization.

2.3 Immobilization of Bacterial Cells

2.3.1 Immobilization of Cells on Glass Beads

Cells were immobilized on the surface of glass beads
of 3-mm diameter. To every 100 glass beads, 12.5 ml
of actively growing 24-h-old Acinetobacter sp. cell
suspension was added and it was refrigerated at 4°C
for 2 days with occasional stirring. The glass beads
with immobilized cells were then filtered, washed and
used in the experiment. The initial weight of biomass
on glass beads were then calculated using the
following procedure: samples of 100 bioparticles
(glass beads with the attached cells) were randomly
collected from the flask. These bioparticles were
washed with distilled water and dried at 105°C for
24 h and weighed. The biofilms were then completely
removed from glass beads by heating the dried
particles in 0.25 M NaOH solution. Then the beads
were washed with distilled water, dried at 105°C for
24 h and weighed. The process of heating, washing
and drying was repeated till constant weight was
obtained, ensuring complete removal of biomass. The
dry biomass weight in 100 bioparticles was then
obtained by the difference between the weight of
dried bioparticles and the weight of dried glass beads
(Shetty et al. 2007). As the total number of
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bioparticles taken for an experimental run was known,
initial attached biomass dry weight in the flask was then
calculated. The immobilization of biomass on glass
beads were carried out at different batches and the
attached biomass dry weight was measured. The
average biomass dry weight for 100 glass beads was
2.92±0.08 mg. The glass beads with immobilized cells
are referred to as glass bioparticles throughout the text.

2.3.2 Entrapment of Bacterial Cells in Calcium
Alginate Beads

For immobilization, a 24-hour-old culture was selected.
A known volume (5 ml) aliquot of the 24-h-old broth
culture was centrifuged using a preweighed centrifuge
tube in a refrigerated centrifuge (Remi, India). The
supernatant was decanted and the tubes were kept in a
hot air oven at 60°C overnight to dry the biomass. The
mass of biomass was calculated by the difference
between weight of the dried tube with the pelleted
residue and that of the empty tube and then the biomass
concentration in the 24-h-old grown cell culture was
determined. This broth culture is used for the preparation
of immobilized cells in alginate beads. A 6%w/v solution
of sodium alginate was mixed with equal volume of
actively growing Acinetobacter sp. cell suspension.
The above mixture was added as drops by using a
syringe to a beaker containing 3% calcium chloride
solution. The ratio of cell alginate and calcium
chloride solution used was 1:5. The beads formed
were of diameter 3±0.2 mm. The beads thus formed
in the calcium chloride solution were kept for 2 h in a
refrigerator for solidification. Later, the calcium
alginate beads were separated from solution and were
kept in sterile water for an hour. As the calcium
alginate beads were prepared by using a specific
volume of 24-h grown cell broth and the number of
particles formed per unit volume of the broth could be
counted, the average amount of biomass per 100
beads was calculated. One hundred Ca-alginate beads
contained 5.6±0.2 mg of biomass. The Ca-alginate
beads with immobilized cells are referred to as Ca-
alginate bioparticles throughout the text.

2.3.3 Experimental Methodology for Cr(VI) Reduction
Experiments

Cr(VI) reduction experiments were conducted with
100 ml of nutrient broth containing different initial

concentrations of Cr(VI) (80, 130, 180, 225 and
275 ppm). Potassium dichromate stock solution was
used as a source of Cr(VI). Experiments were
conducted with 100 or 500 bioparticles (glass or Ca-
alginate beads previously immobilized with the
bacteria). The flasks were not shaken continuously
in order to avoid breakage of beads in the case of the
Ca-alginate bioparticle experiments and the biofilm
shear due to attrition between the bioparticles in the
case of glass bioparticle experiments. Since industrial
application of immobilized cell systems involves
packed bed bioreactors, where the shear effects are
minimal except the shear due to fluid flow, the
laboratory nonshaking conditions are more realistic
with reference to industrial scale applications. How-
ever, intermittent shaking was provided in order to
ensure utility of all the Cr(VI) in the solution by the
biomass in the beads through proper contact. Five
milliliters of the liquid samples was withdrawn at
different intervals of time. In order to prevent the
effect of volume change, four flasks were used for
each initial concentration experiment and sampling
was done from each flask for only two-time intervals.
The collected samples were analyzed for the residual
Cr(VI) concentration. All the experiments were
performed in triplicates and the deviations were found
to be less than ±2%.

2.4 Analytical Method for Chromium Estimation

Samples were centrifuged at 10,000 rpm for 10 min at
4°C to remove suspended biomass, and the concentra-
tion of Cr(VI) in the supernatant was determined
spectrophotometrically at 540 nm using diphenylcarba-
zide reagent in acid solution as the complexing agent for
Cr(VI) (APHA 1998). Absorbance was measured
using a Hitachi U2000 model spectrophotometer.

2.5 Modeling Strategy for Batch Cr(VI) Bioreduction
Process by ANN

The prediction of output for a given set of inputs is a
goal for any modeling strategy. In the present work, it
is necessary to model the batch Cr(VI) reduction by
the immobilized cells so as to predict the performance
of immobilized cell batch reactor. Based on nonline-
arity that may be involved in the bioreduction process
by immobilized cells, ANN-based model is proposed
for performance prediction.
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For every ANN, the first layer constitutes the input
layer (independent variables) and the last one forms
the output layer (dependent variables). Between them,
one or more neurons in layers, called hidden layers,
can be located. The hidden layers act as predictors
and, in theory, there can be more than one hidden
layer. Information in an ANN is distributed among
multiple neurons and connections between the neu-
rons (weights). In neurons, the individual element
inputs are multiplied by weights and the weighted
values are fed to the summing junction. The neuron
has a bias, which is summed with the weighted inputs
to form the net input that is the argument of the
transfer function or activation function; hence, gener-
ating the output. The behavior of ANN depends on
both the weights and the input–output function
(activation function) that is specified for the units
(Shetty et al. 2008). Most of the commonly used
ANNs for process modeling are layered feed-forward
neural networks that are trained from input–output
data using a back propagation algorithm.

Based on experimentation, initial immobilized
biomass loading, initial Cr(VI) concentration and the
incubation time were found to influence the percent-
age of Cr(VI) removal in the batch bioreduction
process. So considering percentage Cr(VI) reduction
as a measure of the batch process performance, it was
chosen as the model output (dependent) variable. The
initial immobilized biomass loading (Xm), initial Cr
(VI) concentration(SI) and the incubation time (t)
were chosen as the model input (independent)
variables. The input–output data were obtained by
conducting batch experiments at different initial
concentrations and initial biomass loading
(corresponding to number of beads used) as presented
in Section “2.3.3”. The network architecture com-
prised of three neurons representing three input
variables in the input layer and one neuron in the
output layer representing the output neuron. Hornik et
al. (1989) have shown that a multilayer ANN with as
few as one hidden layer and with sigmoid transfer
functions can map any function of practical impor-
tance. So a three-layer network with one hidden layer
was chosen in the present study for both the cases of
batch bioreduction using glass immobilized or Ca-
alginate immobilized cells. A total of 70 sets of data
were used for each of the cases. Forty-eight data
points were used for training the network and 22 data
points were used for validation of the network. The

values of input variables and the corresponding values
of percentage Cr(VI) reduction obtained by the
experiments, which were used for training the net-
works, are presented in Tables 1 and 2, respectively
for glass bioparticles and Ca-alginate bioparticles.
Similarly, the data used for validation are shown in
Tables 3 and 4, respectively. The experimental data
with both glass bioparticles and Ca-alginate biopar-
ticles were subjected to ANOVA to test the statistical
significance of the input variables (factors) using
MINTAB 15 software. The p-value obtained (<0.05)
indicated that the experimental data are statistically
significant. A computer code has been written using
the Neural Networks Tool Box of MATLAB version
7.11 for training and testing the ANN. The Leven-
berg–Marquardt Back Propagation (LMBP) training
algorithm was adopted to train the neural networks.
Linear activation function (“purelin” function of
MATLAB) was used for the output layer neuron.
The number of neurons in the hidden layer and the
activation functions for the same were chosen based
on trial and error approach. The network was trained
by varying the number of neurons in the hidden layer
as well as the activation function. After the network
was trained, it was tested using a part (50%) of the
validation data set. The network, which gave the
coefficient of correlation for training as well as testing
greater than 0.99, was chosen. Hence, the numbers of
neurons selected for the hidden layer were seven and
the activation function for the hidden layer neurons
was hyperbolic tan sigmoid transfer function (“tansig”
function of MATLAB). The trained network was
again tested with another 50% of the validation data
set to confirm the validity of the neural network
model developed.

3 Results and Discussions

3.1 Studies on Time Course Variation of Cr(VI)
Reduction

The time course variations of percentage Cr(VI)
reduction with different initial Cr(VI) concentrations
are presented in Figs. 1 and 2 for different bioparticle
loading of 100 and 500 glass bioparticles, respectively.
Similarly, Figs. 3 and 4 show the time course
variations of percentage Cr(VI) reduction during the
bioreduction experiments with Ca-alginate bioparticles
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Table 1 Experimental and ANN model predicted % Cr(VI) reduction for training data set for CASE I (with glass bioparticles)

Data set no. Xm (mg) SI (ppm) t (min) % Cr(VI) reduction Experimental % Cr(VI) reduction Predicted

1 2.92 80 30 5.97 5.99

2 2.92 80 240 28.75 29.49

3 2.92 80 360 32.93 32.54

4 2.92 80 1,440 39.53 39.49

5 2.92 130 30 6.3 4.92

6 2.92 130 60 9.77 10.87

7 2.92 130 90 12.77 15.61

8 2.92 130 240 28.68 27.53

9 2.92 130 360 30.7 30.51

10 2.92 130 1,440 36.09 35.39

11 2.92 180 60 11.6 15.88

12 2.92 180 90 22.65 20.47

13 2.92 180 120 26.79 24.05

14 2.92 180 240 30.38 31.83

15 2.92 180 360 33.7 34.39

16 2.92 180 1,440 35.36 35.63

17 2.92 225 60 17.53 16.6

18 2.92 225 90 21.64 20.9

19 2.92 225 120 25.76 24.24

20 2.92 225 240 29 31.37

21 2.92 225 1,440 34.63 35.32

22 2.92 275 30 4.64 4.71

23 2.92 275 60 10.54 10.05

24 2.92 275 90 12.86 14.26

25 2.92 275 120 16.24 17.55

26 2.92 275 240 24.46 24.66

27 2.92 275 360 28.93 27.11

28 2.92 275 1,440 30.89 30.54

29 14.6 80 30 19.39 20.3

30 14.6 80 90 40.6 38.46

31 14.6 80 240 62.42 63.99

32 14.6 80 1,440 90.91 90.63

33 14.6 130 90 29.8 32.36

34 14.6 130 120 42.26 39.36

35 14.6 130 1,440 83.14 83.61

36 14.6 180 30 13.78 13.65

37 14.6 180 60 21.34 23.363

38 14.6 180 240 57.56 56.03

39 14.6 225 30 8.7 9.13

40 14.6 225 90 24.67 26.49

41 14.6 225 120 37.66 33.04

42 14.6 225 240 45.74 49.15

43 14.6 225 360 57.02 56.24

44 14.6 275 90 23.13 23.47
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for different bioparticle loading of 100 and 500 beads,
respectively. In all the cases, faster rates of reduction
were observed at all the initial concentrations, up to
120 min and then the rate of reduction decreased. Initial
fast rates may be owing to the sorption of Cr(VI)
onto the biofilm on the glass beads or onto the gel
matrix in the case of Ca-alginate beads. However,
with the passage of time, the cells in the biofilm or
within the gel matrix consume the nutrients and
carbon in the solution. As the biofilm on glass
beads thicken or as the biomass grow within the gel
matrix, the bacteria attribute much to the removal
of Cr(VI) and hence bioreduction may be the
dominant mode of Cr(VI) removal. As bioreduction
is always slower as compared to sorption, the rate
decreases at later times when bioreduction is the
dominant mode of removal. Very slower rates,
observed after around 400 min, may be owing to
reduction in the concentration of carbon source and
the nutrients in the solution as a result of utilization
by the microorganisms.

It can be found from Figs. 2 and 4 that, though the
initial rates of reduction are almost similar at different
initial concentrations, at later times the rates of
reduction decreased as the initial concentrations have
increased. The rates are highest at 80 ppm initial
concentration and least at 275 ppm initial concentra-
tion. Reduction in rate with increase in initial
concentration may be attributed to the inhibitory
effect of Cr(VI) to the bacteria at high concentrations.
High concentrations of Cr(VI) may inhibit the rate of
growth of the bacteria in the biofilm (in the case of
glass bioparticles) or inside the gel matrix (in the case
of Ca-alginate bioparticles) and hence leading to a
lowered rate of Cr(VI) reduction. At lower biparticle
loading of 100 bioparticles and with initial

concentrations of 80 to 225 ppm, as can be seen in
Figs. 1 and 3, the rates seem not to be varying
significantly with the initial concentrations. However,
the rate is found to be the lowest at an initial
concentration of 275 ppm, once again indicating the
inhibitory effect at higher concentration.

3.2 Effect of Initial Cr(VI) Concentration

Figures 5 and 6 show the effect of initial Cr(VI)
concentration on the Cr(VI) reduction at the end of
1,440 min (24 h) with glass bioparticles and Ca-
alginate bioparticles, respectively. It can be found that
the percentage reduction of Cr(VI) has decreased with
the increase in initial Cr(VI) concentration. Percent-
age reduction has decreased from around 40 to 31%
with 100 glass bioparticles and from 91 to 55% with
500 glass bioparticles, as the initial concentration
increased from 80 to 275 ppm. Similarly, in the case
of Ca-alginate bioparticles, percentage reduction has
decreased from around 37 to 31% with 100 particles
and from 89 to 55% with 500 particles, as the initial
concentration increased from 80 to 275 ppm. When
the initial Cr(VI) concentration is high, the bacteria in
the biofilm or within the gel matrix get exposed to
higher Cr(VI) levels and hence their growth will be
inhibited. Lower growth leads to lower rates of
reduction and hence leading to lower percentage
reduction at the end of 24 h.

3.3 Effect of Bioparticle Loading on Cr(VI)
Reduction

It can be seen from Figs. 5 and 6 that the percentage
reductions achieved at the end of 24 h are consider-
ably higher with bioparticle loading of 500 beads as

Table 1 (continued)

Data set no. Xm (mg) SI (ppm) t (min) % Cr(VI) reduction Experimental % Cr(VI) reduction Predicted

45 14.6 275 120 31.65 29.39

46 14.6 275 240 39.65 43.33

47 14.6 275 360 48.86 48.81

48 14.6 275 1,440 55.13 53.44

Mean squared error (MSE) 3.176

Root mean squared error (RMSE) 1.78

Coefficient of correlation (R) 0.9914
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Table 2 Experimental and ANN model predicted % Cr(VI) reduction for training data set for CASE II (with Ca-alginate bioparticles)

Data set no. Xm (mg) SI (ppm) t (min) % Cr(VI) reduction Experimental % Cr(VI) reduction Predicted

1 5.6 80 120 23.22 22.33

2 5.6 80 240 28.57 29.34

3 5.6 80 360 32.73 32.61

4 5.6 80 1,440 36.91 38.52

5 5.6 130 30 5.26 4.51

6 5.6 130 120 23.79 21.98

7 5.6 130 1,440 35.33 35.34

8 5.6 180 30 4.98 5.64

9 5.6 180 60 9.97 13.73

10 5.6 180 90 22.71 19.46

11 5.6 180 120 25.75 23.49

12 5.6 180 240 29.91 30.77

13 5.6 180 360 32.68 33.16

14 5.6 180 1,440 34.62 34.42

15 5.6 225 30 10.89 10.32

16 5.6 225 90 20.04 21.97

17 5.6 225 120 24.61 24.81

18 5.6 225 240 28.32 27.83

19 5.6 225 360 32.46 27.5

20 5.6 225 1,440 33.76 32.35

21 5.6 275 30 4.3 2.25

22 5.6 275 60 9.49 10.12

23 5.6 275 120 16.12 19.47

24 5.6 275 240 23.83 26.01

25 5.6 275 360 28.49 27.9

26 5.6 275 1,440 30.64 32.39

27 28 80 90 43.47 41.43

28 28 80 120 50.93 49.06

29 28 80 240 62.74 63.53

30 28 130 120 43.51 42.82

31 28 130 240 52.29 56.18

32 28 130 360 61.07 62.37

33 28 130 1,440 77.48 77.98

34 28 180 60 19.12 26.24

35 28 180 120 48.91 42.92

36 28 180 240 55.46 56.04

37 28 180 360 65.03 61.32

38 28 180 1,440 74.04 73.29

39 28 225 30 7.92 4.85

40 28 225 60 13.7 16.88

41 28 225 240 41.54 43.07

42 28 225 360 48.82 49.32

43 28 225 1,440 58.45 58.8

44 28 275 60 14.93 13.44
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compared to 100 beads, both with glass as well as Ca-
alginate bioparticles and at all initial concentrations of
80 to 275 ppm. Maximum percentage reduction of
around 90% (with glass bioparticles) or 89% (with
Ca-alginate bioparticles) could be achieved with 500
beads whereas only 40% (with glass bioparticles) or
37% (with Ca-alginate bioparticles) could be achieved
with 100 beads for 80 ppm initial Cr(VI) concentra-
tion. When the numbers of bioparticles are larger, the

initial inoculum of bacteria will be higher. With 100
glass or Ca-alginate bioparticles, the amount of initial
biomass loading was 2.92 mg and 5.6 mg, respec-
tively. With 500 glass or Ca-alginate bioparticles, the
amount of initial biomass loading were 14.6 mg or
28 mg, respectively. A large amount of immobilized
bacteria being present initially causes the reduction
process to get accelerated, as they can utilize the Cr
(VI) present in solution at a faster rate. Higher number

Table 3 Experimental and ANN model predicted % Cr(VI) reduction for validation data set for CASE I (with glass bioparticles)

Data set no. Xm (mg) SI (ppm) t (min) % Cr(VI) reduction Experimental % Cr(VI) reduction Predicted

49 2.92 80 90 17.97 17.08

50 2.92 80 120 22.75 20.96

51 2.92 130 120 18.79 19.33

52 14.6 80 60 35.14 30.09

53 14.6 80 120 50.9 45.52

54 14.6 130 360 66.03 66.67

55 14.6 180 90 36.21 31.61

56 14.6 180 360 65.94 64.42

57 14.6 180 1,440 75.13 76.28

58 14.6 225 60 15.53 18.56

59 14.6 275 30 8.34 7.41

60 2.92 80 60 14.37 12.16

61 2.92 180 30 5.79 10.1

62 2.92 225 30 10.61 11.14

63 2.92 225 360 33.55 33.67

64 14.6 80 360 76.97 73.86

65 14.6 130 30 11.31 14.28

66 14.6 130 60 18.11 24.04

67 14.6 130 240 54.71 57.49

68 14.6 180 120 48.91 38.5

69 14.6 225 1,440 60.21 66.21

70 14.6 275 60 14.95 16.19

Table 2 (continued)

Data set no. Xm (mg) SI (ppm) t (min) % Cr(VI) reduction Experimental % Cr(VI) reduction Predicted

45 28 275 90 23.43 23.22

46 28 275 120 30.9 30.28

47 28 275 360 48.43 48.93

48 5.6 80 120 23.22 22.33

Mean squared error (MSE) 5.16

Root mean squared error (RMSE) 2.27

Correlation coefficient (R) 0.992
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of bioparticles will also lead to increased total surface
availability for the growth of bacteria and the sites for
mass transfer of Cr to biofilm or the gel matrix
increase per unit volume of the reaction mixture. All
these factors enhance the Cr(VI) reduction process
leading to increased percentage reduction with in-
crease in bioparticle loading. So the efficiency of the

bioreduction process may be increased by using high
bioparticle loading into the reactor. Optimizing the
number of bioparticles in order to achieve high
percentage reduction or low Cr(VI) concentration in
the effluent in order to maintain the effluent quality
within the standards set by the statutory bodies is very

Fig. 2 Time course variation of percentage reduction of
Chromium(VI) by glass bioparticles (500 beads) at different
initial Cr(VI) concentrations of 80, 130, 180, 225 and 275 ppm

Table 4 Experimental and ANN model predicted % Cr(VI) reduction for validation data set for CASE II (with cells immobilized on
Ca-alginate beads)

Data set no. Xm (mg) SI (ppm) t (min) % Cr(VI) reduction Experimental % Cr(VI) reduction Predicted

49 5.6 80 30 8.93 4.7538

50 5.6 80 60 13.1 12.77

51 5.6 130 60 9.39 12.5

52 5.6 130 90 13.15 18.1

53 5.6 130 240 28.55 28.43

54 5.6 130 360 32.19 29.76

55 5.6 225 60 15.25 17.37

56 5.6 275 90 12.18 15.64

57 28 80 30 20.5 16.86

58 28 80 60 33.54 30.95

59 28 80 360 76.4 69.36

60 28 80 1,440 89.44 87.84

61 28 130 30 8.77 12.78

62 28 130 60 15.64 26.03

63 28 130 90 28.63 35.79

64 28 180 30 12.29 13.05

65 28 180 90 34.97 35.94

66 28 225 90 19.27 25.53

67 28 225 120 30.19 31.61

68 28 275 30 7.98 4.34

69 28 275 240 39.06 43.57

70 28 275 1,440 54.86 53.88

Fig. 1 Time course variation of percentage reduction of
Chromium(VI) by glass bioparticles (100 beads) at different
initial Cr(VI) concentrations of 80, 130, 180, 225 and 275 ppm
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important in developing an industrial scale application
of the process.

3.4 Artificial Neural Network Model

Neural network models were developed for the
prediction of percentage Cr(VI) reduction by batch
bioreduction process using the cells of newly isolated
strain of Cr(VI) resistant bacteria immobilized on
CASE I: glass beads and CASE II: Ca-alginate beads.
The input variables to the network are initial biomass
loading (Xm), initial Cr(VI) concentration (SI) and
incubation time (t). Neural network development for
each of the CASE I and II were based on training
using 48 experimental data sets and validation using
22 data sets obtained by conducting batch experi-
ments at different initial concentrations and initial
biomass loading (corresponding to number of beads
used). For both cases I and II, one hidden layer

network, with three neurons in the input layer, seven
sigmoidal neurons in the hidden layer, and one linear
neuron in the output layer was found to be suitable for
forecasting the batch biodegradation process. The
network architecture being similar for both cases is
presented in Fig. 7. The network parameters like the
weights and bias values and the transfer functions
used are presented in Tables 5 and 6, respectively for
Case I and Case II. The experimental and ANN
predicted values of percentage Cr(VI) removal for
different sets of input variable values used for training
the neural network for Case I and Case II are
presented in Tables 1 and 2, respectively. The mean
squared error (MSE), root mean squared error
(RMSE) and the coefficient of correlation (R) values
for training set are presented in the tables for both the
cases. R values greater than 0.99 and small values of
MSE and RMSE signify the good fit of the network to
the experimental data. After the training was com-
pleted, the network was tested using the validation
data set. The predicted values of percentage Cr(VI)

Fig. 6 Effect of initial Cr(VI) concentartion on percentage Cr
(VI) reduction at the end of 24 h of batch run with 100 and 500
Ca-alginate bioparticle loading

Fig. 4 Time course variation of percentage reduction of
Chromium(VI) by Ca-alginate bioparticles (500 beads) at
different initial Cr(VI) concentrations of 80, 130, 180, 225
and 275 ppm

Fig. 3 Time course variation of percentage reduction of
Chromium(VI) by Ca-alginate bioparticles (100 beads) at
different initial Cr(VI) concentrations of 80, 130, 180, 225
and 275 ppm

Fig. 5 Effect of initial Cr(VI) concentartion on percentage Cr
(VI) reduction at the end of 24 h of batch run with 100 and 500
glass bioparticle loading
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removal for validation data set inputs for each of
Cases I and II are presented in Tables 3 and 4,
respectively. The plots of predicted % reduction vs.
experimental percentage reduction for validation data
set inputs, respectively for Case I and Case II are
presented in Figs. 8 and 9, which show that the slopes
of the fitted line for these points are 0.988 and 0.996,
respectively with correlation coefficients of 98.5 and
97.7%, respectively. The slopes being very close to
unity with high values of correlation coefficients

indicate that the developed neural network models
are valid within the range of input variables used for
training the network. Hence, the neural network
models were developed for prediction of performance
of batch bioreduction process using glass bioparticles
and Ca-alginate bioparticles, followed by validation.
These models can be used for prediction of time
course variation of percentage reduction at any initial
Cr(VI) concentration and initial biomass loading
based on number of beads used. Figure 10 is a
representative comparison of time course variation of
percentage Cr(VI) reduction during batch bioreduc-
tion process obtained experimentally and that which
is predicted by ANN, at initial Cr(VI) concentration
of 80 ppm and with biomass loading of 14.6 mg
(500 glass bioparticles). The figure clearly supports
the validity of ANN model developed for the
prediction of time course variation during batch
Cr(VI) bioreduction.

3.5 Effect of Type of Bioparticle

Two different types of bioparticles, one with cells
immobilized on the surface, as a biofilm and another
with cells entrapped in gel matrix were used in this
study to compare the effect of mode of immobiliza-
tion or immobilized cell location on the efficiency of
bioreduction process. Glass beads with surface

Xm

SI 

t

% Cr(VI) reduction 

Input 
layer Hidden layer 

Output 
layer 

Fig. 7 Neural network architecture for bioreduction process
with CASE I: glass bioparticles and CASE II: Ca-alginate
bioparticles

Table 5 Network weights and biases for the ANN model (for glass bioparticles)

Input layer to hidden layer weights

W1 W1 W1 b

Neuron 1 1.4134 3.2121 1.6866 1.9161

Neuron 2 3.1163 0.5566 1.6764 −1.4532
Neuron 3 2.7793 −3.3871 0.2121 −1.1644
Neuron 4 −2.0719 −2.3822 0.1468 0.6847

Neuron 5 −0.5218 3.3249 1.2931 1.0672

Neuron 6 1.1463 1.3266 0.4371 2.1373

Neuron 7 −0.1369 0.0468 3.5079 4.2830

Transfer function for hidden layer neurons: hyperbolic tan sigmoid (tansig in MATLAB)

Hidden layer to output layer weights

W2 W2 W2 W2 W2 W2 W2 b

−0.0217 0.4433 0.2684 0.2507 0.0546 0.0636 2.0491 −1.9609
Transfer function for output layer neurons: Pure linear (purelin in MATLAB)

1888 Water Air Soil Pollut (2012) 223:1877–1893



immobilized cells and Ca-alginate beads with entrap-
ped cells were used in the experiments. Figure 11
shows the comparison of the type of bioparticles on
percentage reduction at different initial Cr(VI) con-
centrations with 500 bioparticle loading. The initial
inoculum biomass loading were 14.6 mg and 28 mg
respectively for glass and Ca-alginate beads in the
case of 500 bioparticles. The initial inoculum biomass
loadings were 2.92 mg and 5.6 mg, respectively for
glass and Ca-alginate beads in the case of 100
bioparticles. It can be found that the initial inoculums
with Ca-alginate beads are approximately twice that
with glass beads. In spite of lower initial inoculums
biomass amount, the percentage reduction achieved
with glass beads were higher than those with Ca-
alginate beads at all the initial concentrations. Similar

observations were made with 100 bioparticles (figure
not shown).

A true comparison is the one in which the
performance with the same amount of initial biomass
loading for the two cases are compared, rather than
that with the same number of beads. So time course
variation of percentage reduction with the Ca-alginate
bioparticles was predicted using the ANN model
developed, taking the initial biomass loading to be
14.6 mg, which is the same as the biomass present
with 500 glass bioparticles. The ANN-predicted time
course variation for Ca-alginate bioparticles with
14.6 mg initial biomass loading was compared with
the experimental time course variation with 500 glass
bioparticles (14.6 mg biomass loading) at 80 ppm
initial Cr(VI) concentration. The resultant plots are

Table 6 Network weights and biases for the ANN model (for Ca-alginate bioparticles)

Input layer to hidden layer weights

W1 W1 W1 b

Neuron 1 3.3137 0.1119 2.9165 −2.1951
Neuron 2 0.1560 −0.0068 −4.7752 −5.7710
Neuron 3 −1.2708 6.6989 −4.5185 3.3452

Neuron 4 5.0183 −3.3772 −1.8475 −1.9571
Neuron 5 1.3789 3.7641 3.3835 −1.3012
Neuron6 0.1910 6.5545 3.4819 0.1547

Neuron 7 −3.9454 −4.3176 1.7319 −4.3037
Transfer function for hidden layer neurons: hyperbolic tan sigmoid (tansig in MATLAB)

Hidden layer to output layer weights

W2 W2 W2 W2 W2 W2 W2 b

0.2523 −3.2817 −0.0972 0.1477 0.0584 −0.1946 −0.1623 −3.1542
Transfer function for output layer neurons: pure linear (purelin in MATLAB)

Fig. 8 Plot of ANN predicted vs. experimental percentage Cr
(VI) reduction by glass bioparticles for validation data set

Fig. 9 Plot of ANN predicted vs. experimental percentage Cr
(VI) reduction by Ca-alginate bioparticles for validation data set
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shown in Fig. 12. It can be seen from Fig. 12 that the
percentage reduction with glass bioparticles are
always higher than those with Ca-alginate bioparticles
indicating the higher rate of reduction with the glass
bioparticles. The percentage reduction at the end of
24 h with glass bioparticles is around 91% whereas
that with Ca-alginate bioparticles is only around 61%.
Similar observations were made when experimental
time course variations with 100 Ca-alginate biopar-
ticles (5.6 mg initial biomass loading) were compared
with ANN-predicted time course variations with
5.6 mg initial biomass loading (figure not shown).

Figure 13 shows the comparison of glass biopar-
ticles and Ca-alginate bioparticles in terms of per-
centage reductions obtained at the end of 24 h with
different initial Cr(VI) concentrations with initial
biomass loading of 14.6 mg as a reference. For both

the bioparticle types, ANN-predicted values of Cr(VI)
reduction were used. It can be seen that the
percentage reductions obtained with glass bioparticles
were around 30 to 10% higher than those achieved
with the Ca-alginate bioparticles, as the initial Cr(VI)
concentration varied in the range of 80 to 275 ppm.
Figures 11 and 13 show that glass beads are better
supports to be used for cell immobilization as
compared to Ca-alginate beads. It can be seen that
higher rates of reduction as observed from time
course variations of percentage Cr(VI) reduction and
higher percentage reduction as observed at the end of
the 24-h period could be achieved with the glass
bioparticles as compared to Ca-alginate bioparticles.

The lower rates of reduction and percentage reduc-
tions in the case of Ca-alginate bioparticles may be
attributed to the diffusional resistance offered by Ca-
alginate gel matrix for the transfer of Cr(VI) from the
bulk liquid to the cells that are entrapped in the matrix.

Fig. 11 Effect of type of bioparticles (glass and Ca-alginate
bioparticles) used on percentage Cr(VI) reduction (experimen-
tal) at the end of 24 h of batch run with different initial Cr(VI)
concentrations and bioparticle loading of 500 beads

Fig. 10 Representative plot for comparison of experimental
and ANN predicted time course variation of percentage
reduction during batch bioreduction process using glass
bioparticles with SI=80 ppm and Xm=14.6 mg

Fig. 13 Effect of type of bioparticles (glass and Ca-alginate
bioparticles) used on percentage Cr(VI) reduction (ANN
predicted)at the end of 24 h of batch run with different initial
Cr(VI) concentrations and with Xm=14.6 mg

Fig. 12 Effect of type of bioparticles (glass and Ca-alginate
bioparticles) used on time course variation of percentage Cr(VI)
reduction with Xm=14.6 mg and SI=80 ppm
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In the case of glass bioparticles, as the bacteria are in the
biofilm on the surface of glass beads, the outer layers of
cells in the biofilm get the nutrients easily and also get
easily exposed to Cr(VI), leading to high rate of growth
and bioreduction process. The resistance to mass
transfer is the biofilm diffusional resistance that may
play a role in the transfer of nutrients and Cr(VI) into the
inner core of the biofilm only. The diffusional resistance
offered by the gel matrix may be significantly higher
than that offered by the biofilm. So faster rate of Cr(VI)
reduction is observed with glass beads as compared to
Ca-alginate beads. Significant improvement in percent-
age reduction may be obtained by cells immobilized on
glass beads if suitable immobilization strategies are
adopted to increase the amount of immobilized biomass.

4 Conclusions

Batch bioreduction of Cr(VI) were carried out with
the cells of newly isolated chromium resistant
Acinetobacter sp. bacteria, immobilized on glass
beads and Ca-alginate beads. The rates of Cr(VI)
bioreduction during the batch process and the per-
centage bioreduction at the end of 24 h, decreased
with the increase in initial Cr(VI) concentration,
indicating the inhibitory effect of Cr(VI) at higher
concentrations. Efficiency of bioreduction can be
improved by increasing the bioparticle loading or
the initial biomass loading. Glass bioparticles have
shown better performance as compared to Ca-alginate
bioparticles in terms of batch Cr(VI) reduction
achieved and the rate of reduction, both under the
conditions of the same initial biomass loading and the
same bioparticle loading. Significant improvement in
percentage reduction can be obtained by using glass
bioparticles as compared to Ca-alginate bioparticles.
So glass beads may be considered as better cell carrier
particles for immobilization as compared to Ca-
alginate beads. Around 90% reduction of 80 ppm Cr
(VI) could be achieved after 24 h with initial biomass
loading of 14.6 mg on glass beads. Optimizing the
number of bioparticles or initial biomass loading in
order to get high percentage reduction or low Cr(VI)
concentration in the effluent in order to maintain the
effluent quality within the standards set by the
statutory bodies is very important in developing an
industrial scale application of the process. Artificial
neural network-based models that are developed in

the present study for the prediction of batch Cr(VI)
bioreduction using immobilized cells of Acineto-
bacter sp. for each of the cases with glass bioparticles
and calcium-alginate bioparticles have exhibited fairly
good performance, as demonstrated by the predictions
for validation data sets. So the model can be used for
any further predictions of batch Cr(VI) bioreduction
process with the bacteria within the range of
conditions used for the model development.
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