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Abstract-The oscillatory flow of a homogeneous, conducting, viscous fluid in a channel of varying 
cross section is considered. The solutions for large Womersley number (Y are obtained by the method 
of matched asymptotic expansions, supplementing the earlier work of Ramachandra Rao and 
Deshikachar. It is observed that the magnetic field provides an appropriate length scale necessary for 
matching the solutions and thus resolves the difficulty arising in the corresponding non-magnetic case. 

1. INTRODUCTION 

The importance of steady and oscillatory flows of viscous fluid through channels of variable 
cross section and their applications to physiological fluid dynamics has drawn the attention of 
many research workers. The purely oscillatory viscous flows over curved boundaries exhibit a 
steady streaming component due to nonlinearity of the governing equations. This phenomena 
of steady streaming is of great interest and has been discussed at length by Schlichting [l], 
Batchelor [2] and Telionis [3]. Following Benjamin [4], Duck [5] has studied the oscillatory 
viscous flow in a channel or pipe with slightly perturbed walls. In the above problems, the 
oscillatory pressure gradient was prescribed. Whereas Chow and Soda [6] have obtained the 
hydrodynamic solution for a laminar flow in a plane asymmetric channel with the assumption 
that the spread of surfaceness is large compared to the half mean width of the channel, by 
prescribing the volume flux. The corresponding magnetohydrodynamic (MHD) steady and 
oscillatory flows have been studied by Deshikachar and Ramachandra Rao [7] and Ramachan- 
dra Rao and Deshikachar [8]. Following Stuart [9], Grotberg [lo] has obtained an asymptotic 
solution, for the oscillatory flow in a tapered channel, for large Womersley number (Y. The 
difficulties in matching the solutions have been removed by him [lo], by introducing a steady 
drift layer that is thicker than the Stokes layer. 

Ramachandra Rao and Deshikachar [8] have presented a solution for the oscillatory flow in a 
variable channel for small values of a, in the presence of a transverse magnetic field. In this 
paper, we obtain the solutions for large values of LY, by the method of matched asymptotic 
expansions, supplementing the earlier work. It is interesting to note that there is no difficulty in 
matching the solutions, whereas in the corresponding non-magnetic case the asymptotic 
method breaks down. The matching here is possible essentially due to the magnetic field 
providing another necessary appropriate length scale. 

2. MATHEMATICAL FORMULATION 

Consider the two-dimensional flow of an incompressible, viscous, homogeneous, conducting 
fluid in a channel with the walls given by 

y’ = Qx’)d = d + ul(x’), (1) 
y’ = r,+‘)d = d + a&‘), (2) 

where XI-axis is along the channel, y’-axis is perpendicular to it, the functions aI and +(x’) 
give the slow variations of the walls and d is the half-mean width of the channel. 

The equations of motion under the usual MHD approximations in terms of stream function 
q defined by 

u=aW and sly 

ay 
‘u=-- 

ax 
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are given by 

$9’ + a?&’ a2*’ a@ a%@ r --_~---= 
dt’ ayr dy’ ax’ csy’ an dy’2 (4) 

a2qf + a?(/’ a2qY aqv a2q# 1 l3p’ 

( 

a31# 

,,ran’2 
---= _---_I.. y ~ 

at’ ad ax’ ax’ i?y’ P ay’ ad ay12 
+??!I 

> axI3 ’ (5) 

where p is the density, Y is the coefficient of viscosity, o is the eiectrical conductivity and &, is 
the uniform magnetic field applied in the y ‘-direction. 

The boundary conditions on the walls are given by 

““‘=O=z on y'=qid, 

SY’ 
i = 1, 2, (6) 

and further the volume flux oscillating with frequency o is prescribed by 

dy ’ = Q’ ~04~0, for all x’. 

Introducing the non-dimensional variables 

~lt = ly’lu,d, x = Y/h, y = y’ld, t = tot’, Q = Q’luod, (8) 
where I is the characteristic length along the channel, eqns (4) and (5) after the elimination of 
pressure term, reduce to 

The co~es~nding boundary conditions are 

3=*=$ on y=qi, 

a 
i = 1, 2, 

I 

~2 a 
2dy=Q cos t, 

111 aY 
for all X, (11) 

where c$ = ~d~J~ is the Womersley number, Re = u~d/~ is the ReynoIds number, H2= 
@d2aJpv is the Hartmann number, 6 = d/A (d c.. A) and V2 = S2(a2/&‘) + (a’/ay2). The 
solution of (9) satisfying conditions (10) and (11) has been presented by Ramachandra Rao and 
Deshikachar [8], for small values of Q. 

3. SOLUTION FOR LARGE Q! 

When CY is large, by taking the limit of (Hz/$) as Ly+=m in eqn (9), we arrive at two 
different cases. In the inviscid core region, first, if we allow both H2 and 2 to vary as cy+ m, 
(H2/d)+ q2(=B$a/pv), a finite nonzero value that is independent of viscosity Y. In this case 
we have, in addition to the length scale of the Stokes layer, a second length scale due to the 
magnetic field affected drift layer. On the other hand, if H2 is fixed then (H2/a?) --* 0 as 01-+ m. 
In this case, the magnetic field has no effect on the drift layer and its behaviour is same as that 
in the non-magnetic case, discussed by Grotberg [lo]. 

Case @Ii): Let (HZ/m2)+qZus a+m 

The governing equation, (9), in this case, neglecting higher orders in 6, reduces to 

a32y a -+q2----+@ ( w $1~ aw31y =. ----- 
a+? at ay2 ay ay2 ax a~ ay3 1 ’ 

(12) 

where fl= Re 6 /a2 and this equation corresponds to the inviscid equation. Now we expand rj~ 
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in (12) in powers of @(Cl) as 

1c, = i qOe” + cc. + #l k r+$e” f C.C. -t- +Q;) + O(@“), (13) 

where r&, and $~i correspond to the first and second harmonics and r& correspond to the steady 
streaming (Telionis [3]), and the abbreviation C.C. denotes the complex conjugate of the 
preceding term. Using the expansion of ly given by (13) in (12) and solving the corresponding 
equations in the transformed coordinates, 

x=x, Y=Ylrl+c5, (14) 

where r?= rll - ~‘2, F = (Q + rl~)l(% - r]J, which transforms the boundary walls y = vi 
(i = 1, 2) into Y = fl, we obtain 

q = i [nYD&)e” + /l(nYDl(x)e”’ + nYD,(X)] + C.C. + O(@“), (1% 

where D@(x) and D&r) will be determined by using the matching procedure. By expanding the 
pressure gradient as 

aP 1 apo -=- ( -+B ax fl ax 2 + O@‘)) + O(l/Lu), (16) 

the momentum equations in (4) and (5) to the above order in transformed coordinates give the 
following equations: 

ape-o 
-SF-- ’ 

dP0 
z = - y2Doe' + cc., 

(17) 

(18) 

dp1= _D D*’ 

ax O0 - 4’4 -t c.c., (19) 

where y* = i + q2, “*” denotes the complex conjugate and prime denotes derivative with 
respect to X. The unsteady component of p1 is omitted here as we are interested only in the 
steady streaming. In order to examine the boundary layer or the inner region, we use the 
transfo~ation of variables, given by 

5*=X, q1= oun(l- Y)* 

Now using +(fi, ql, t) = (Y?@(x, y, t) in (4), we obtain, for large LY, 

(20) 

The bounds ~nditions at the wall reduce to 

W_, zjy ’ 
C#J = Lyeit + C.C. on ql=O. 

Expanding Q1 in powers of /I by 

9 = $0 + B&-i- W’) + O(Ilcr), (23) 

and using (23) in (21), the leading term Cpo satisfying the corresponding boundary conditions is 
obtained as 

+. = [Do(l - eWyrpl - yql)Iy + m]e” + C.C. (24) 

Using the matching conditions at zeroth order for both X and Y components of velocity field, 
one gets D,, = l/r~. The solution of velocity field for the entire flow region to the leading order 
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is obtained from (3) and (24) and is given by 

u. = (1 - e-y601)eir/rj + c.c., (25) 
u. = (Y - e-~~i)~‘e~f/~ + C.C. (26) 

The steady streaming component of $r at p order given by (21) and (23) is obtained as 

CpS = [-DZ(5r)(pI +A + BewqP1’ + (~f/~3)~(~~)] + c.c., (27) 

where 

F(R) = 

(Y - Y*)e-(Y-Y’)~l e-Y*Pl 

v*(u + Y*)[(Y + Y*)2 - 47 + Y*IY*2 - q2) 

+ ]2Y*(2Y2 - q2) - Y(Y2 -4*x1 - y*cpr)l e_yQ, 

YY*(Y* - 42)2 
9 (28) 

A and B are determined by using the boundary conditions (22). Whereas DZ(zl) is determined 
by the corresponding matching condition and it is given by 

r>, = rt’(iq - Y2)/2q~3, (29) 

where 

y2 = Im(y) = [(q4 + 1)f - q2}/2]k (30) 

Thus the steady state component of the axial velocity is given by 

u1- ’ - - z = -$ [(iq - yZ)(l - eeqv1)/2q - (G(ql) - G(O)e-q’*)] + c.c., (31) 

where G(f~r) = dF/drp,. 
Here it is interesting to observe that there is no difficulty in using the asymptotic method to 

match the solutions and obtain the value of @(El), whereas in the corresponding non-magnetic 
case this asymptotic method breaks down. The matching in this case is possible, essentially due 
to the magnetic field providing another necessary appropriate length scale. 

Case (ii): Let H2/Ly2+ 0 as a--, 00 
In this case eqn (9) reduces to 

-++ _-_alyti a3v 
ay’ 6% ( w a311, 

ay dx ay2 ax ay3 > 
= 0, (32) 

and this corresponds to the case without magnetic field. Equation (32) and its solution for the 
oscillatory flow in a tapered channel has been discussed by Grotberg’s, which is applicable to a 
channel of any variable cross section and hence a more general one. 

By following the same procedure as in the case case (i), we obtain the zeroth order velocity 
components u. and b. given by (25) and (26), respectively, with y replaced Y1 = 1 + i/j& 
Proceeding to the first order, we obtain the steady component of & as 

$:=$[;(I-i)e- 291 + (5 + i(3 + 2cp1)e-y*V’ 

+ (I- i)e-y*q* f AI + B~(EI)cPI + c,(E,)~:] + C.C. 

In (33), A, and Br can be determined by using the boundary conditions (22) but C1 cannot be 
determined and the asymptotic method fails here for fixed amplitude oscillations. In the limit 
(pr-+co, we should be able to match the Stokes Iayer velocities to the outer region. Following 
Stuart [9], we choose the coefficient of &i.e. C,) as zero, leaving only the singular term with 
qr. The linear term in ipl gives the following steady velocity components which must be 
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matched to the steady drift L+(X) in the inviscid core: 

341 

(34) 

Direct matching is not possible here because the length scale given by the dimensionless Stokes 
layer 6, = (v/md2)i is not sufficient to match the steady drift phenomena. Introduction of 
another length scale given by 6n = S,lp is necessary for matching. 

Following Stuart [9], we express cf, as 

9 = NE1, t) - ‘pl%(&, t) + (Pa(L cpi, t). (36) 

The potential flow given by first two terms on the right-hand side of (36) balances the pressure 
gradient in (21). As we are interested only in the steady part, writing (Pa as 

&=&+4G (37) 

and averaging with respect to time, we obtain, by neglecting interacting terms of Cp; and &, 
the equation for tpz as 

(38) 

Using the new boundary layer coordinate and stream function defined by 

4D = BP)%* @(Err cp) = -4G(51, rpl) 

in (38), we obtain 

(39) 

3 
?A!+ - 

( 

a*Q, a% acf, --- 
aq3 a51 arp aq2 %I > 

= 0. (40) 

The following boundary conditions must be satisfied by the function Cp: 

a=0 on v=O, (41) 

limE=-limu:=F, 
‘pl”m acp V” 

(42) 

lim ZZ = Z&(X) + c.c. 
V-m arp 

(43) 

The conditions (41)-(43), respectively, represent steady mass flow condition, the matching of 
the Stokes layer solution to the drift layer and the matching of the drift layer to the inviscid 
core. An approximate solution of (40) satisfying (41)-(43) is obtained by the method of Fettis, 
extended to partial differential equations by Stuart [9]. Since we are considering a variable 
wall, the r,i dependent function in (34) and (35) can be written as 

NE,) + cc. = -b2X(5,) (44) 

and a similar form is expected for &(Zji) given by 

&(&) + C.C. = -C’&). (45) 

We rewrite the boundary conditions on Q as 

at Q, = 0, (46) 

as (~400 (47) 
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and expand the solution of (40) as 

Q = Y(51) + &W&1 T) + s2%(51, V) + c3%(51, V) + 0(s4), (48) 

where E is a parameter that will be set to unity later, ~(5~) is a function of c1 to be determined 
and gives the form of Cp as cp + 00. The equations and the solutions for @i, a2 and a3 satisfying 
the corresponding boundary conditions are presented in the Appendix. Using (A14), (A15) 
and (A16) in (48) setting E = 1 and making use of the boundary condition Q, = 0 on 9~ = 0, we 
obtain the following ordinary differential equation for y: 

yy’ - a22 + (y”a4x2)/4yr3 + 4~~c~x~y”ly’~ + Z+ZY’~ + (2&y” + 1,~’ + 31,)/8~‘~ 

+ (12&~‘~ + 2416yr2 + 72&y’ + 2881s)/12yr5 = 0. (49) 

In general it is very difficult to obtain a closed form solution of (49). So we assume that x(fl) 
can be expanded, near E1 = 0, in the form 

x(51) = &Xl + I3257 +. - .), (50) 

where p2 is a constant. In the analysis of Grotberg [lo], x(Ei) is taken in the linear form as 
~(5~) = Ei. Using (50) in (49), we obtain the solution for y subject to y(0) = 0 as 

Y(&) = &(I + 4325T +. . .I, (51) 

where 

(52) 

By taking X(h) = 51, i.e. /I2 = 0 in the above results, we get 

@(El, cp) = [(b2 + c2)lu]5i(1 - eeoV) - c2g1, (53) 

which coincides with the corresponding result presented by Grotberg [lo]. Further, by putting 
c = 0 and b = a in the above results, we recover the result given by Stuart [9]. 
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APPENDIX 

Substituting eqn (48) in (40) and collecting like powers of E, we obtain the following differential equations: 

9, + y’;i, = 0, 

where 

@a + y’& = (a4y”X2/y’)e-2Y’T - h2c2xx’e-Y’q + a2c2(x2y” - xx’y’)rpe-Y’V + c4xx’, 

;i;, + y’4, = r,(E1)e-3r’V + (I, + l,p, + I,rpz)e-2Y’V + (I, + l,cp + 1,~’ + I,cp3)e-Y”, 

1, = a”x’(y’y” + 2y”)/4y“‘, 

I, = a6X3[(2c2/a2)(9X’yy’/X + 7y’y” - 25y”2) - 4y”]/4y’4, 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 
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1, = a4CZX3[2X’y’ry”/,7 + 4y’2y” - 18y’y”]/2y’4, 

I 4 = -~4c2x3y~~q y12, 

I, = a4c2X3[X’y’2u” - 3(yU2 - x’y’y’“lx)]2y’4, 

1, = a4c2~3[~‘y’2y”/~ - y’yn2 + c2(8x’y”/x + 4y”y”‘- 8y’2y”2)/a2]2y’4, 

1, = aZc4X3[3X’y’3y”fX •t- y’3y’m - 3y’2y”2]/y’4 

I,= -aZC4X3[y’3y”2-X’y’l/llX’]/yf4; a2=b2+c2. 

The corresponding boundary conditions for Qr, a,, 9, etc. are 

6, = b2X, Qi =O, i = 2, 3,4, . . , at rp =O, 

&=-c2x, Qi=O, i=2,3,4 ,... , as q24m. 

WJ) 
(A7) 

(A@ 

(A9) 

(AlO) 

(All) 

6412) 
(A13) 

(A14) 

(Al5) 

(Al6) 

me solutions of (Al)-(A3) satisfying the boundary conditions (A12) and (A13) are, respectively, 

9, = -a2Xe-Y’vJy’ - c”pp, 

9, = a4X2y”(e-Y’q - e-2Y’q/2)2y’4 + a2c2x2y”(4 + 4y’p, + y’cp2)e-Y’q/2y’4, 

a3 = /@~-Y’w _ e-3~“)/18y’3 + l,(h-Y” _ e-2Y’P)/4y’3 

+ 1,[6~-~‘~ - 2(2 + y’q)e-2y”‘]/18y’4 + 14[14Cy” - (11 + 8y’(p + 2y’2Cp2)e-2y’V]/8y’5 

+ [1U,yf3(y’q, + 1)]/12~‘~ + 61,y”(y”q’+ 4y’q, + 4) + 41,y’(~‘~q~ + 6y”rp2+ 18y’q + 18) 

+ 31s(~‘~9~~ + 8y’(p3 + 36~“~~ + %y’cp + 96). 


