TECHNICAL NOTE

COMPUTER AIDED ANALYSIS OF REINFORCED CONCRETE COLUMNS SUBJECTED TO AXIAL COMPRESSION AND BENDING-I L-SHAPED SECTIONS

Mallikarjuna \dagger and P. Mahadevappa
Karnataka Regional Engineering College, Suratkal-574157, India

(Received 2 July 1991)

Abstract

Numerical investigations on the strength of L-shaped short reinforced concrete columns subjected to combined axial load and bending were undertaken for the purpose of providing design aids for structural engineers. The use of a computer lends itself naturally to the solution of the problem which generally requires an iterative process. Therefore, an attempt has been made in this paper to computerize the analysis procedure for L -shaped sections and in the accompanying paper (part III) for T-shaped column sections. The ACI-318, CP-110 and IS-456 codes presented design aids only for square/rectangular and circular columns. Apparently this study constitutes the first to present the interaction curves for L-shaped and T -shaped column sections with the limit state analysis.

INTRODUCTION

The analysis and design of L-shaped corner columns are complicated and cumbersome. Next to rectangular and circular shapes, L-sections may be the most frequently encountered reinforced concrete columns, since they can be used at outside and re-entrant building corners. Nevertheless, information for their analysis and design is not generally available to structural engineers, either in working stress or ultimate strength theories. There are some design approaches in which the design effort is reduced by approximated shape of strength envelopes (e.g. Bresler [2], Parme et al. [3], CP-110 [4], ACI-318 [5] and IS-456 [6, 7]), and the use of simplifying approximations (e.g. the method of superposition [8] and the method of equivalent uniaxial eccentricity [8]). Ramamurthy [9] developed simple equations to closely represent the load contours in square and rectangular columns. He also illustrated how they can be used to determine the appropriate interaction diagram for given eccentricities of the load. Although several noteworthy articles [2,3, 8-17] on biaxial bending of square/rectangular column sections, which contributed greatly to the understanding of this subject, have appeared in recent years, significant gaps in the area of design aids for biaxial bending still exist. To lessen these gaps, a number of comprehensive design aids are presented in the present investigation.
This paper deals with the limit state analysis of L-shaped reinforced concrete (R.C.) columns. The aim of limit state design is to achieve acceptable probabilities that the structure will not become unfit for the use for which it is intended, that is, that it will not reach a limit state. To ensure the above objectives, the design should be based on characteristic values for material strengths and applied loads, which takes into account the variations in the material strengths and in the loads to be supported.

[^0]
ASSUMPTIONS AND MATERIAL PROPERTIES

In the analysis, the following assumptions [6], which are almost the same as those codified in CP-110 [4], are made:
(a) the strain distribution in the concrete in compression and the strain in the reinforcement, whether in tension or compression, are derived from the assumption that plane sections normal to the axis remain plane after bending, and that there is no bond-slip between the reinforcement and the concrete,
(b) the tensile strength of concrete is ignored,
(c) the relationship between stress-strain distribution in concrete is assumed to be parabolic as shown in Fig. 1. The maximum compressive stress is equal to $0.67 f_{c k} / 1.5$ (see Fig. 2),
(d) the stresses in reinforcement are derived from the representative stress-strain curve for the type of steel used. Typical curves are shown in Figs 3 and 4,
(e) the maximum compressive strain in concrete in axial compression is taken as 0.002 ,
(f) the maximum compression strain at the highly compressed extreme fibre in concrete subjected to axial compression and bending, but when there is no tension on the section, is taken as 0.0035 minus 0.75 times the strain at the least compressed extreme fibre (see Fig. 2a),
(g) the maximum compressive strain at the highly compressed extreme fibre in concrete subjected to axial compression and bending, when part of the section is 11 tension, is taken as 0.0035 (see Fig. 2b). In the limiting case, when the neutral axis lies along one edge of the section, the strain varies from 0.0035 at the highly compressed edge to zero at the opposite edge.

METHOD OF ANALYSIS

The criteria generally proposed for determining the ultimate strength of R.C. members subjected to axial compression combined with bending are based on limiting the maximum strain (or stress) in the concrete to some prescribed value. The load-carrying capacities discussed

Fig. 1. Idealized stress-strain curve for concrete.
here apply to relatively short columns for which the effect of lateral deflections on the magnitude of bending moments is negligible. Also effects of sustained load and reversal of bending moments are not considered.
In the present investigation, a square section of size $B \times B$ is considered. If a small square of size $B_{1} \times B_{1}\left(B_{1}<B\right)$ is removed from the corner of a original square section then it will become a symmetric L-section as shown in Fig. 5. For different values of B_{1} the L-sections of various sizes can be obtained. If $B_{1}=0.0$, the L-section becomes square section. Since the ratio of B_{1} / B for all practical purposes varies from 0.3 to 0.6 , the present work is limited to the ratios of B_{1} / B equal to $0.3,0.4,0.5$ and 0.6 . The parameters considered are symmetric L-shaped column sections and reinforcement is assumed to be uniformly distributed as a thin strip along all the sides with effective cover to depth ratio $\left(B^{\prime} / B\right)$ as 0.1 .
Design charts for combined axial compression and bending are obtained in the form of interaction diagrams in which curves for $P_{u} / f_{c k} B^{2}$ versus $M_{u} / f_{c k} B^{3}$ are plotted for different values of $p / f_{c k}$. When bending moments are acting

Fig. 2. Stress and strain diagrams.

Fig. 3. Idealized stress-strain curve for mild steel bars.
in addition to axial load, the points for plotting the interaction diagrams are obtained by assuming different positions of neutral axis. For each position of the neutral axis, the strain distribution across the section and the stress block parameters are determined. The stresses in the reinforcement are also calculated from the known strains. Thereafter the resultant axial force and the moment about the centroid of the section are calculated as follows.
To find the forces and moments due to concrete in the L-section subjected to axial compression and bending (both uniaxial and biaxial bending with equal eccentricities $e_{x}=e_{y}=e$), the following procedure is used in the analysis. The stress block (see Fig. 2) is divided into number of strips. First the width of each strip is calculated. This strip width is multiplied by corresponding width of the section and depth of the strip, which gives the force in that strip of concrete. The algebraic sum of all such elemental forces gives the total force in concrete. This force in concrete multiplied by the distance between centroid of the stress block and centroid of the section gives the moment due to concrete. The forces and moments due to reinforcement (both for uniaxial and biaxial bending) are determined as follows:

$$
\begin{equation*}
\text { force in the reinforcement }=\sum_{i=1}^{n}\left(f_{s t}-f_{c t}\right) p_{i} A_{c} / 100 \tag{la}
\end{equation*}
$$

moment of resistance
with respect to steel $=\sum_{i=1}^{n}\left(f_{s i}-f_{c i}\right) p_{i} A_{c} y_{i} / 100$

Fig. 4. Idealized stress-strain curve for high yield strength deformed bars.

Fig. 5. L-shaped column section.
in which n is the number of rows of reinforcement, but in the present work, since the reinforcement is assumed to be distributed uniformly as thin strip along all sides of the L-section, the notation n here refers to the number of unit length of the reinforcement strip at which the stresses in steel and concrete (at that level) are to be determined, $f_{s i}$ is the stress in the i th row of steel (compression being positive and tension negative), $f_{c i}$ is the stress in concrete at the level of the i th row of reinforcement, A_{c} is the area of concrete, may be taken equal to the gross area, $p_{i}=\left(A_{s i} / A_{c}\right) 100$ is the percentage of steel in the i th row, $A_{s i}$ is the area of
reinforcement in the i th row, y_{i} is the distance of the i th row of reinforcement measured from the centroid of the section. It is positive towards the highly compressed edge and negative towards the least compressed edge.

INTERACTION DIAGRAMS

Because of symmetry, in a square section, the eccentricity on either side of the centre of gravity makes no difference in the approach to interaction curves except when steel is not symmetric, whereas, in the case of L-shaped column sections the same is not true. For the L-shaped section considered here, the minor principal axis $U-U$ and major principal axis $V-V$ are shown in Fig. 5, and the interaction curves have been prepared by considering the axis of bending as explained below:

Case 1 . Uniaxial bending parallel to edge $1-2$, by treating edge 1-2 in compression.
Case 2. Uniaxial bending parallel to edge $1-2$, by treating edge 1-2 in tension.
Case 3. Biaxial bending with equal eccentricities treating corner 2 in compression.
Case 4. Biaxial bending with equal eccentricities treating corner 2 in tension.

The four computer programs, namely UNIAX1, UNIAX2, BIAX1, and BIAX2 for the above-mentioned cases 1-4, respectively, are developed by using FORTRAN and are presented in the Appendix. These programs were used to obtain the ultimate bload $\left(P_{\nu}\right)$ and moment $\left(M_{\nu}\right)$ as

Fig. 6. Axial compression with uniaxial bending.

Fig. 9. Axial compression with uniaxial bending.

Fig. 12. Axial compression with uniaxial bending.

Fig. 11. Axial compression with uniaxial bending.

Fig. 14. Axial compression with biaxial bending.

Fig. 16. Axial compression with biaxial bending.

Fig. 15. Axial compression with biaxial bending.

Fig. 17. Axial compression with biaxial bending.
output for different positions of neutral axes. The input data consists of the square size $\left(B_{1}\right)$ of the removed portion from the original square section, depth (B) of the section, cover depth (B^{\prime}), characteristic strength of the concrete $\left(f_{c k}\right)$ and steel (f_{y}), and modulus of elasticity of steel (E_{c}). All the loads and moments so obtained are graphically represented in terms of non-dimensional parameters ($P_{\mu} / f_{c k} B^{2}$ versus $M_{u}\left(f_{c k} B^{3}\right)$ and are shown in Figs 6-17.

LIMITATIONS

The number of variables considered in this paper are restricted as there was limited space. In the present investigation, the following parameters were considered:
(i) symmetric L-shaped column sections with reinforcement as a thin strip along all sides,
(ii) effective cover to depth ratio $\left(B^{\prime} \mid B\right)$ is taken as 0.1 in all the cases,
(iii) B_{1} / B ratios are $0.0,0.3,0.4,0.5$ and 0.6 ,
(iv) the modulus of elasticity of mild steel is taken equal to $200 \mathrm{kN} / \mathrm{mm}^{2}$.

CONCLUSIONS

The analysis of reinforced concrete L-shaped column sections subjected to axial compression and bending (uniaxial and biaxial) has been computerized. Interaction curves for L-shaped column sections under axial compression and uniaxial bending for two cases are presented in Figs 6-9 and Figs 10-13. For columns under axial
compression and biaxial bending with equal eccentricities, the curves for two cases are shown in Figs 14-15 and Figs 16-17. It is hoped that the charts which are included in this paper, will be useful aids for designers and also will bring some attention to the particular form of resistance exhibited by these cross-sections. It offers the possibility of economizing and can complement the existing design procedures.

Acknowledgements-Partial support of this research by the Structural Engineering Research Centre, Madras, is gratefully acknowledged. The authors would like to express their gratitude to Mr G. V. Surya Kumar, Mr K. Rama Raju and P. Shivakumar, Scientists, SERC, Madras, for their help in developing the program on a microcomputer.

REFERENCES

1. Mallikarjuna and P. Mahadevappa, Computer aided analysis of reinforced concrete columns subjected to axial compression and bending-II. T-shaped sections. Comput. Struct., in press.
2. B. Bresler, Design criteria for reinforced concrete columns under axial load and biaxial bending. ACI Struct. Jnl 57, 481-490 (1960).
3. A. L. Parme, J. M. Nieves and A. Gouwens, Capacity of reinforced rectangular columns subject to biaxial bending. ACI Struct. Jnl 63, 911-923 (1966).
4. CP-110, Code of Practice for the Structural use of Concrete: Part 1: Design, Materials and Workmanship;

Part 3: Design Charts for Circular Columns and Prestressed Beams. British Standards Institution, London (1972).
5. ACI-318, Building Code Requirements for Reinforced Concrete. American Concrete Institute, Detroit (1983).
6. IS-456, Code of Practice for Plain and Reinforced Concrete. Indian Standards Institution, New Delhi (1978).
7. IS-456, Design Aids for Reinforced Concrete to IS-4561978. Indian Standards Institution, New Delhi (1978).
8. R. Park and T. Paulay, Reinforced Concrete Structures, Chap. 5, pp. 158-160. John Wiley.
9. L. N. Ramamurthy, Investigation of the ultimate strength of square and rectangular columns under biaxially eccentric loads. Symposium on Reinforced Concrete Columns, Detroit, ACI-SP-13, Paper No. 12, 263-298 (1966).
10. K. H. Kwan and T. C. Liauw, Computer aided design of reinforced concrete members subjected to axial
compression and biaxial bending. Struct. Engineer, 63B, 34-40 (1985).
11. E. Czerniak, Analytical approach to biaxial eccentricity. Proc. ASCE, J. Struct. Div. 88, 105-158 (1962).
12. P. W. Reed, Simplified analysis for thrust and moment of concrete sections. ACI Struct. Jnl 77, 195-200 (1980).
13. L. Lachance, Stress distribution in reinforced concrete sections subjected to biaxial bending. ACI Struct. Jnl 77, 116-123 (1980).
14. A. K. Jain, Reinforced Concrete. Nem Chand, Roorkee (1983).
15. Mallikarjuma, Computer aided analysis and design (in structural analysis). Research Report, Structural Engineering Research Centre, Madras (1985).
16. Mallikarjuna, A computer program for design of reinforced concrete members. Indian Concrete Journal 63, 101-105 (1989).
17. P. Purushothaman, Reinforced Concrete Structural Elements. McGraw-Hill, New Delhi (1984).

APPENDIX

C**
C \quad ANAISIS OF L-SHAPED COLUMN SECTINS UNDER AXIAL
C
C

```
            TAMC=AMC+BMC1
            GO TO 80
C DETERMINATION OF FORCES IN COMPRESSION
C REINEORCEMENT
80 B7=B-DC
IF (XU-B7) 90,160,160
PSC=0.0
AMSC=0.0
PSC1=0.0
AMSC1=0.0
D=0.0
    D=D+1.0
    EC=0.0035*D/XU
    IF(FY.EQ.250.0)GO TO 96
    IF (EC.GE.0.0038) GO TO 96
    IF (EC.LE.0.00145) GO TO 96
    FC=FY/1.15-12831145.0*(0.0038-EC)*(0.0038-EC)
    GO TO 97
    FC=EC*ES
    F1=FY/1.15
    IF(FC.GE.F1) FC=F1
    B8=XU-(B-B1-DC)
    IF (D-B8) 110,100,110
    100 PSC1=B1*TS* (FC-EK)
    AMSC1=PSC1* (Y1-(XU-D))
    GO TO 115
    110 PSC2=2.0*TS* (FC-FK)
    AMSC2=PSC2* (Y1-(XU-D))
    PSC=PSC+PSC2
    AMSC=AMSC+AMSC2
    B9=XU-DC
    115 IF (D.LT.B9) GO TO 95
    PSC3=(B-2.0*DC)*TS* (FC-FK)
    AMSC3=PSC3* (Y1-(XU-D))
    TPSC=PSC+PSC1+PSC3
    TAMSC=AMSC+AMSC1+AMSC3
C DETERMINATION OF FORCES DUE TO TENSILE REINFORCEMENT
    Z1=(B-DC-XU)
    PST=0.0
    AMST=0.0
    PST1=0.0
    AMST1=0.0
    Z=0.0
    116 z=z+1.0
    ET=0.0035*Z/XU
    IF (EY.EQ.250.0) GO TO 117
    IF(ET.GE.0.0038) GO TO 117
    IF(ET.LE.0.00145) GO TO 117
    ET=FY/1.15-12831145.0*(0.0038-ET)* (0.0038-ET)
    GO TO 118
    117 FT=ET*ES
    F1=FY/1.15
    IF(FT.GE.F1) FT=F1
    Z2=(B-B1-DC-XU)
    IF(Z-Z2) 120,130,120
```

```
    130 PST1=-B1*TS*ET
        AMST1=PST1* (Y1-(XU+Z))
        GO TO 125
        PST2=-2.0*TS*FT
        AMST2=PST2*(Y1-(XU+Z))
        PST=PST+PST2
        AMST=AMST+AMST2
    125 IF(Z.LT.Z1) GO TO 116
        PST3=-(B-2.0*DC)*TS*FT
        AMST3=PST3*(Y1-(XU+Z))
        TPST=PST+PST1+PST3
        TAMST=AMST+AMST1+AMST3
        GO TO 200
    1 6 0
        FT=0.0
        PSC=0.0
        AMSC=0.0
        PSC2 =0.0
        AMSC2=0.0
        D1=(XU- (B-DC))
        D=D1-1.0
        165 D=D+1.0
        EC=0.002*D/(XU-X1)
        IF(FY.EQ.250.0) GO TO 168
        IF (EC.GE.0.0038) GO TO 168
        IF(EC.LE.0.00145) GO TO 168
        FC=FY/1.15-12831145.0*(0.0038-EC)* (0.0038-EC)
        GO TO 169
        FC=EC*ES
        F1=FY/1.15
        IF (FC.GE.F1)FC=F1
    169 IF (D-D1) 166,167,166
    167 PSC3=(B-B1-2.0*DC)*TS* (FC-FK)
        AMSC3=PSC3* (Y1-(XU-D))
        GO TO 165
    166 B11=XU- (B-B1-DC)
        IF(D-B11) 170,180,170
    180 PSC2=B1*TS* (FC-FK)
        AMSC2=PSC2* (Y1-(XU-D))
        GO TO }17
    170 PSC4=2.0*TS* (FC-EK)
        AMSC4=PSC4* (Y1-(XU-D))
        PSC=PSC+PSC4
        AMSC=AMSC+AMSC4
        B12=XU-DC
        IF(D.LT.B12) GO TO 165
        PSC1=(B-2.0*DC)*TS* (FC-FK)
        AMSC1=PSC1*(Y1-(XU-D))
        TPSC=PSC+PSC1+PSC2+PSC3
        TAMSC=AMSC+AMSC1+AMSC2 +AMSC3
        TPST=0.0
        TAMST=0.0
        200 TE=TPSC+TPST+TPC
        TM=TAMSC+TAMST+TAMC
        E=TM/TF
        XC=TM/(FCK*B*B*B)
        YC=TF/(FCK*B*B)
        P1=P/FCK
        WRITE (6,6) XU,P1, ET,XC,TC
    FORMAT (5X,' XU=',F5.1,5X,'P1=',F5.4,5X,'FT=',F5.1,
    5X,'XC=',F5.4,5X,'YC=',F5.4/)
    XUMAX=2.0*B
    IF (XU.LE.XUMAX) GO TO 8
    IF(P.LT.4.0) GO TO 7
    CONTINUE
    STOP
    END
```

Clomenc*)

```
```

 < GO TO 210
 GO TO 210
 190 WS=B1*TS
 GO TO 210
 200 WS=(B-B1-2.0*DC)*TS
 210 PSC=WS* (FC-EK)
 AMSC=PSC*(Y1-(XU-D))
 TPSC=TPSC+PSC
 TAMSC=TAMSC+AMSC
 IF (D.LT.B11) GO TO 160
 DETERMINATION OF FORCES IN TENSION STEEL
 FT=0.0
 TPST=0.0
 TAMST=0.0
 IF (XU.GE.B6)GO TO 265
 Z=0.0
 Z=Z+1.0
 ET=0.002*Z/(XU-X1)
 IF(FY.EQ.250.0) GO TO 216
 IF(ET.GE.0.0038) GO TO 216
 IF(ET.LE.0.00145) GO TO 216
 FT=FY/1.15-12831145.0* (0.0038-ET)* (0.0038-ET)
 GO TO 217
 216 FT=ET*ES
 F1=FY/1.15
 IF(FT.GE.F1) FT=F1
 217 B12=B1+DC-XU
 B14=B-DC-XU
 IE(Z.EQ.B12) GO TO 230
 IF(Z.EQ.B14) GO TO 240
 WS=2.0*TS
 GO TO 260
 WS=B1*TS
 GO TO 260
 240 WS=(B-2.0*DC)*TS
 260 PST=-WS*FT
 AMST=PST* (Y1-(XU+Z))
 TPST=TPST+PST
 TAMST =TAMST +AMST
 IF(Z.LT.B14) GO TO 215
 265 TF=TPC+TPSC+TPST
 TM=TAMC+TAMSC+TAMST
 E=TM/TE
 P1=P/FCK
 XC=TM/(FCK*B*B*B)
 YC=TF/(FCK*B*B)
 WRITE (6,6) XU,P1,FT,XC,TC
 FORMAT (5X,'XU=',F6.1,5X,'P1=',F5.4,5X,'FT=',F5.1,
 5X,'XC=',F6.4,5X,'YC=',F6.4/)
 XUMAX=2.0*B
 IF (XU.LT.XUMAX) GO TO 8
 IF(P.LT.4.0) GO TO 7
 299 CONTINUE
 300 STOP
 END
 C-**)

```

TS=AS/RL
\(X U=X U+5.0\)
\(\mathrm{FK}=0.446 * \mathrm{FCK}\)
\(A S=P * A / 100.0\)
```

$A=B^{*}(B-B 1)+B 1^{*}(B-B 1)$
$Y 1=(B * B * B * 0.707-B 1 * B 1 * B 1 * 0.707-B 1 * B 1 *(B-B 1) * 1.414) / A$
$R L=4.0 * B-8.0 * D C$
C DETERMINATION OF FORCES DUE TO CONCRETE
$\mathrm{B} 2=(2.0 * \mathrm{~B}-\mathrm{Bl}) * 0.707$
IF (XU-B2) 10,10,20
$\mathrm{X} 1=3.0 * \mathrm{XU} / 7.0$
$\mathrm{X} 2=\mathrm{XU}-\mathrm{X1}$
GO TO 30
$\mathrm{X} 1=3.0 * \mathrm{~B} 2 / 7.0$
$\mathrm{X} 2=\mathrm{B} 2-\mathrm{X} 1$
$\mathrm{TPC}=0.0$
TAMC $=0.0$
$\mathrm{X}=0.0$
$\mathrm{x}=\mathrm{x}+1.0$
IF (X-X1) 40, 40,50
$\mathrm{F}=\mathrm{FK}$
GO TO 60
$\mathrm{F}=\mathrm{FK}-\mathrm{FK}$ * $(\mathrm{X}-\mathrm{XI})$ * $(\mathrm{X}-\mathrm{X} 1) /(\mathrm{XU}-\mathrm{XI}) /(\mathrm{XU}-\mathrm{XI})$
50
$\mathrm{B} 3=1.4142^{\star}(\mathrm{B}-\mathrm{B} 1)$
$\mathrm{B} 4=0.707$ * B
IF (X-B3) 70,70,100
IF (X-B4) $80,80,90$
$\mathrm{W}=2.0 * \mathrm{X}$
GO TO 130
90
100
110
120
$\mathrm{W}=2.0$ * (1.4142*B-X)
GO TO 130
IF (X-B4) $110,110,120$
$\mathrm{W}=2.0 * 1.4142 *(\mathrm{~B}-\mathrm{B} 1)$
GO TO 130
$W=(2.0 * B-B 1-X * 1.4142) * 2.0 * 1.4142$
$\mathrm{PC}=\mathrm{W}$ * F
$A M C=P C *(Y 1-X)$
$T P C=T P C+P C$
TAMC=TAMC + AMC
$\mathrm{B} 5=\mathrm{X} 1+\mathrm{X} 2$
IF (X.LT.B5) GO TO 35
DETERMINATION OE FORCES IN COMPRESSION REINFORCEMENT TPSC=0.0
TAMSC=0.0
$\mathrm{B} 6=(2.0 * \mathrm{~B}-\mathrm{B} 1-2.0 * \mathrm{DC}) * 0.7071$
IF (XU-B6) 140, 150, 150
$\mathrm{D}=0.0$
GO TO 160
$150 \quad D=X U-B 6-1.0$
$160 \quad \mathrm{D}=\mathrm{D}+1.0$
$\mathrm{EC}=0.002 * \mathrm{D} /(\mathrm{XU}-\mathrm{XI})$
IF (FY.EQ.250.0) GO TO 168
IF (EC.GE.0.0038) GO TO 168
IF (EC.LE.0.00145) GO TO 168
$F C=F Y / 1.15-12831145.0 *(0.0038-E C) *(0.0038-E C)$
GO TO 169
FC=EC*ES
$\mathrm{F} 1=\mathrm{FY} / 1.15$
IF (FC.GE.F1) FC=F1
$\mathrm{B} 7=\mathrm{B} * 0.7071$
$\mathrm{B} 8=(\mathrm{B}-\mathrm{B} 1-\mathrm{DC}) * 1.4142$
$\mathrm{B} 9=\mathrm{XU}-\mathrm{B} 7$
B10 $=\mathrm{XU}-\mathrm{B} 8$
B11=XU-1.4142*DC
IF (D-B10) 180,180,190
WS=4.0*TS*1.4142
GO TO 210

```
```

 190 WS=2.0*TS*1.414
 210 PSC=WS* (FC-FK)
 AMSC=PSC*(Y1-(XU-D))
 TPSC=TPSC+PSC
 TAMSC=TAMSC+AMSC
 IF (D.LT.BII) GO TO }16
 DETERMINATION OF FORCES IN TENSION STEEL
 FT=0.0
 TPST=0.0
 TAMST=0.0
 IF(XU.GE.B6)GO TO 265
 Z=0.0
 215 Z=Z+1.0
 ET=0.002*Z/(XU-X1)
 IF(FY.EQ.250.0) GO TO 216
 IF(ET.GE.0.0038) GO TO 216
 IF (ET.LE.0.00145) GO TO 216
 FT=FY/1.15-12831145.0*(0.0038-ET)* (0.0038-ET)
 GO TO 217
 216 FT=ET*ES
 F1=FY/1.15
 IF(FT.GE.F1) FT=F1
 B12=-B9
 B13=-B10
 B14=B6-XU
 IF(Z-B13) 230,230,240
 WS=2.0*TS*1.4142
 GO TO 260
 240 WS=4.0*TS*1.4142
 260 PST=-WS*FT
 AMST=PST* (Y1-(XU+Z))
 TPST=TPST+PST
 TAMST=TAMST+AMST
 IF(Z.LT.B14) GO TO 215
 TF=TPC+TPSC+TPST
 TM=TAMC+TAMSC+TAMST
 E=TM/TF
 P1=P/FCK
 XC=TM/(FCK*B*B*B)
 YC=TF/(FCK*B*B)
 WRITE (6,6) XU,P1,XC,TC
 FORMAT (5X,' XU=',F7.1,5X,'P1=',F8.5,
 5X,'XC=',F6.4,5X,' YC=',F6.4/)
 XUMAX=1.5*B
 IF (XU.LT.XUMAX) GO TO 8
 IF(P.LT.4.0) GO TO 7
 299 CONTINUE
 300 STOP
 END
 C-
C**
C AXIAL COMPRESSION AND BIAXIAL BENDING WITH EQUAL
C ECCENTRICITES (See Figs.16 and 17)
C**
OPEN (5,FILE=' BIAX2.DAT')
OPEN (6,FILE='BIAX2.OUT',STATUS='NEW')
DO 299 I=1,10
READ (5,5,END=300) B1,B,DC,FCK,FY,ES
5 FORMAT (5F6.2,F10.2)
P}=0.
7 P=P+0.5
XU=DC
XU=XU+5.0
FK=0.446*FCK
A=B* (B-B1) +B1* (B-B1)
Y1=(B*B*B*0.707-B1*B1*B1*0.707-B1*B1*(B-B1)*1.414)/A
AS=P*A/100.0

```
```

 RL=4.0*B-8.0*DC
 TS=AS/RL
 C DETERMINATION OF FORCES DUE TO CONCRETE
B2=(2.0*B-B1)*0.707
Y2=B2-Y1
IF (XU-B2) 10,10,20
X1=3.0* XU/7.0
X2=XU-X1
GO TO 30
X1=3.0*B2/7.0
X2=B2-X1
TPC=0.0
TAMC=0.0
X=0.0
X=X+1.0
IF (X-XI) 40,40,50
F=FK
GO TO 60
F=FK-FK* (X-X1)* (X-X1)/(XU-X1)/(XU-X1)
B3=1.4142* (B-B1)
B4=0.707*B
B31=B2-B3
B41=B2-B4
IF(X-B31) 70,70,100
IF(X-B41) 80,80,90
W=4.0*X
GO TO 130
W=(B-B1)*1.4142*2.0
GO TO 130
100 IF (X-B41) 110,110,120
110 W=(1.4142*B-B2+X)*2.0
GO TO 130
120W=(B2-X)*2.0
130 PC=W*F
AMC=PC* (Y2-X)
TPC=TPC+PC
TAMC=TAMC+AMC
B5=X1+X2
IF(X.LT.B5) GO TO 35
DETERMINATION OF FORCES IN COMPRESSION REINFORCEMENT
TPSC=0.0
TAMSC=0.0
B6=(2.0*B-B1-2.0*DC)*0.7071
IF (XU-B6) 140,150,150
D=0.0
GO TO 160
150 D=XU-B6-1.0
160 D=D+1.0
EC=0.002*D / (XU-X1)
IF (FY.EQ.250.0) GO TO 168
IF(EC.GE.0.0038) GO TO 168
IF (EC.LE.0.00145) GO TO 168
FC=FY/1.15-12831145.0* (0.0038-EC)* (0.0038-EC)
GO TO 169
FC=EC*ES
F1=FY/1.15
IF(FC.GE.F1) FC=F1
B7=B*0.7071
B8=(B-B1-DC)*1.4142
B9=XU-B7
B10 =XU-B2+B8
B11=XU-1.4142*DC
IF(D-B10) 180,180,190
WS=2.0*TS*1.4142
GO TO 210
190 WS=4.0*TS*1.414
210 PSC=WS* (FC-FK)
AMSC=PSC* (Y2-(XU-D))
TPSC=TPSC+PSC

```
```

 TAMSC=TAMSC+AMSC
 IF(D.LT.B11) GO TO 160
 C DETERMINATION OF FORCES IN TENSION STEEL
FT=0.0
TPST=0.0
TAMST=0.0
IF (XU.GE.B6)GO TO 265
Z=0.0
215
Z=z+1.0
ET=0.002*Z/(XU-X1)
IF(FY.EQ.250.0) GO TO 216
IF(ET.GE.0.0038) GO TO 216
IF(ET.LE.0.00145) GO TO 216
FT=FY/1.15-12831145.0* (0.0038-ET)* (0.0038-ET)
GO TO 217
216 FT=ET*ES
F1=FY/1.15
IF(FT.GE.F1) FT=F1
217 B12=-B9
B13=B2-B8-XU
B14=B6-XU
IF(Z-B13) 230,230,240
230 WS=4.0*TS*1.4142
GO TO 260
240 WS=2.0*TS*1.4142
260 PST=-WS*FT
AMST=PST* (Y2-(XU+Z))
TPST=TPST+PST
TAMST=TAMST+AMST
IE(Z.LT.B14) GO TO 215
265 TF=TPC+TPSC+TPST
TM=TAMC+TAMSC+TAMST
E=TM/TE
P1=P/FCK
XC=TM/ (FCK*B*B*B)
YC=TF/ (FCK*B*B)
WRITE (6,6) XU, P1, XC,YC
FORMAT (5X,' XU=', F7.1,5X,'P1=',F8.5,
5X,'XC=',F6.4,5X,'YC=',F6.4/)
XUMAX=1.5*B
IF (XU.LT.XUMAX) GO TO 8
IF(P.LT.2.0) GO TO 7
299
CONTINUE
300 STOP
END

```
```


[^0]: \dagger Present address: Engineering Mechanics and Design Group, Department of Mechanical Engineering, University of Toronto, Toronto MSS 1A4, Canada.
 \ddagger See ref. [1].

