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ABSTRACT We utilize the dispersion property of an X-ray fil-
ter material for the generation of a single sub-50-as pulse from
high-order harmonics. The attosecond pulse, formed by select-
ing the spectral range of high-order harmonic radiation, contains
an intrinsic chirp corresponding to the quadratic phase variation
during a half cycle of a laser pulse. We show that this chirp can
be compensated by using the negative group-delay dispersion
of a thin X-ray filter, compressing the attosecond pulse down to
sub-50-as.

PACS 42.65.Re; 42.50.Hz; 42.65.Ky

1 Introduction

The generation of attosecond (as) pulses using
high-order harmonic radiation has been an important goal due
to its applications. It has been suggested that an attosecond
pulse train can be obtained by selecting some harmonics ly-
ing in the plateau region by taking advantage of the fact that
a regularly spaced harmonic spectrum resembles the spec-
trum of a mode-locked laser [1]. Attosecond pulses, however,
can be produced only if the phase relation between different
harmonic orders is favorably set. This theoretical prediction
was confirmed in a recent experiment [2, 3]. There have also
been suggestions for obtaining a single attosecond pulse [4],
which has been confirmed in experiments [5–7]. By selecting
the harmonic radiation emitted only near the peak of a fem-
tosecond laser pulse, Kienberger et al. [7] demonstrated the
generation of a single attosecond pulse of 250-as duration. Ac-
cording to the studies reported so far on this topic, only a few
adjacent harmonics were used for generating the attosecond
pulse. This is because the generation of shorter pulses requires
a large number of harmonics that can be coherently added.
The restriction on the number of selected harmonics is due
to the fact that a good phase relationship exists only between
adjacent harmonics, unlike the case of the mode-locked laser
in which a good phase locking occurs over a wide frequency
range. Harmonic radiation emitted with an interval of a half
optical cycle normally forms a train of attosecond pulses. The
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generation of a single attosecond pulse, on the other hand,
requires the use of the harmonic radiation emitted only dur-
ing a particular half cycle, which is naturally a continuum
radiation. The highest frequency of harmonics emitted during
each half cycle increases until the pulse peak is reached if the
laser intensity is lower than the saturation intensity for opti-
cal field ionization. A single attosecond pulse can be produced
by selecting the continuum radiation emitted around the pulse
peak [5].

There are two crucial requirements to generate such
a short pulse – a broad frequency bandwidth and a linear phase
relation over the selected frequency range. Although high-
order harmonics can support such a broad bandwidth [8, 9],
the phase relation between harmonics contains a frequency
chirp. In fact, the chirped structure of the harmonics restricts
the second requirement, which could seriously limit the re-
sulting pulse duration. Therefore, it is essential to investigate
the phase relation between the selected adjacent harmonics in
order to obtain the shortest possible pulse duration of either
a single attosecond pulse or an attosecond pulse train.

In Sect. 2 we investigate the chirp structure of harmonics
and present the results obtained from numerical solutions of
the time-dependent Schrödinger equation (TDSE). It is seen
that the lack of phase locking between adjacent harmonics
mainly arises due to the fact that the high-harmonic signal
develops a chirped structure during a half cycle of the laser
period. We also calculate an optimum bandwidth for the selec-
tion of harmonic radiation to generate the shortest attosecond
pulse.

In Sect. 3 a method of how to compensate the chirp is de-
scribed. We propose to use the dispersion property of an X-ray
filter material used for selecting the spectral range of trans-
mitted harmonic radiation. By applying a 5-fs laser pulse on
a gas target with an intensity above the saturation intensity for
optical field ionization, we obtain a broad continuum radia-
tion from atoms which are subjected to a large nonadiabatic
increase of electric field during a half optical cycle. We show
from our numerical analysis that a single sub-50-as pulse can
be obtained by properly choosing laser parameters and filter
material.

2 Chirp structure of harmonics
during a half optical cycle

It is well known that high-order harmonics can sup-
port a broad bandwidth needed for the generation of a very
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short pulse. Having the bandwidth as broad as possible, how-
ever, does not guarantee the shortest pulse when the harmonic
radiation is chirped. In order to analyze the chirp structure of
the harmonic radiation, we calculated the dipole acceleration
by obtaining the numerical solution of the time-dependent
Schrödinger equation coupled with Maxwell equations, con-
sidering the propagation of an intense femtosecond pulse
through gaseous atoms. The effect of focusing and the self-
phase modulation due to ionization are incorporated [10]. Fig-
ure 1 shows the spectral amplitude of harmonics from neon
atoms driven by a 5-fs laser pulse with a peak intensity of
I = 4.7 ×1015 W/cm2. The neon-target medium of 0.5-mm
length and of 5-Torr pressure is placed 10 mm behind the laser
focus so that only harmonics of short trajectories survive after
propagation [11, 12]. Since this intensity is higher than the
saturation intensity, all neutral atoms are fully ionized before
reaching the peak of the laser pulse envelope. The ionization
probability can be estimated by projecting the wave function
to the ground state, 1 − ∣∣〈ϕg|ϕ(t)

〉∣∣2
, as shown with the laser

field in Fig. 2. It is clearly shown that the atoms are fully
ionized before t = −0.5T0. This results in the continuum gen-
eration at the high-frequency part of the spectrum. The mod-
ulation of harmonics at the lower-frequency region is obvious
since the harmonics are generated over several optical cycles.
The continuum radiation starts from the frequency of about
100w0 and extends to the cutoff. To understand this spec-
tral structure, one may use the semi-classical theory, which is
much simpler than the TDSE.

High-order harmonic generation is well understood in
terms of the semi-classical model [13]. An electron tunnels
out through the atomic potential well modulated severely by
the strong laser field. The ionized electron is accelerated by
the intense laser field and it returns to the atomic core when the
laser field is reversed in the next half cycle. The kinetic energy
of the electron at the time of recombination is released in the
form of high-energy photons with frequency

ω(t) = 1

h

(
p(t)2

2me
+ Ip

)
, (1)

FIGURE 1 Spectral amplitude of high-order harmonic obtained for
neon atoms driven by a 5-fs laser pulse with a peak intensity of
I = 4.7×1015 W/cm2. The neon-target medium of 0.5-mm length and of
5-Torr pressure is placed 10 mm behind the laser focus

FIGURE 2 The electric field of the laser pulse (dashed line) and the esti-
mated ionization probability (solid line) for the case of Fig. 1. The shift of the
laser-pulse peak is due to the Gouy phase shift, corresponding to the distance
between the laser focus and the medium

where w is the time-dependent carrier frequency, p(t) is the
momentum of the electron at the moment of recombination,
and Ip is the ionization potential. There are two main paths
which contribute to the harmonics – short and long trajec-
tories. When the macroscopic condition is favorably set for
the attosecond pulse generation, harmonics are mostly con-
tributed by the short trajectories [11, 12]. The frequency of the
short trajectories corresponding to the case of Fig. 1 is shown
in Fig. 3. Since harmonic radiation occurs at every half cycle
of the laser where the laser intensity is different, the maximum
frequency of each half cycle is different, that is (3.17Up(t)+
Ip)/h. The maximum frequency of the curve at t = −1.5 in
Fig. 3 is about 100w0. The harmonic radiation at t = −1.0
generates the continuum radiation as there is no more radia-
tion after that curve because of the depletion of neutral atoms.
Consequently, a broad continuum radiation could be gener-
ated. Figure 3 explains not only the continuum radiation but
also the chirp structure of the harmonic radiation. The har-
monics from short trajectories have a positive chirp, as seen
from the slopes of the curves in Fig. 3.

We define the chirp coefficient in the time domain as
α = dω/dt. There are two major factors determining the chirp

FIGURE 3 Harmonic frequency as given by the semi-classical theory for
the conditions of Fig. 1
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coefficient. The first factor includes the laser parameters –
intensity and frequency. It is shown in Fig. 3 that the high-
est frequency of each curve is determined by the cutoff rule,
(3.17Up(t)+ Ip)/h. The chirp coefficient is then roughly pro-
portional to Up/T0 or I/ω0. Secondly, for each curve the chirp
coefficient is larger in a certain bandwidth, as is evident from
Fig. 3; it is clear that α has a larger value in the mid-frequency
region. Within this frequency bandwidth the chirp coefficient
can be approximated as a constant and the corresponding
spectral phase ϕ̃h can be written as

ϕ̃h(ω) = 1

2α
(ω−ωc)

2 , (2)

where ωc is the center frequency of the bandwidth chosen.
To obtain shorter pulses, the variation of the spectral phase
should be as small as possible within a desired frequency
bandwidth. We can see from (2) that this can be achieved with
a large chirp coefficient. Thus, one has to use a high-intensity
laser pulse and select a bandwidth in the mid-plateau region.
Assuming the use of a Gaussian transmission filter for the fre-
quency selection, the duration of the chirped attosecond pulse,
τ , is given by

τ = 4 ln 2

∆ω

√
1 +

(
∆ω2

4α ln 2

)2

. (3)

Then, the maximum bandwidth required for minimum pulse
width is given by ∆ω = √

4α ln(2). Although the generated
harmonic bandwidth can be very broad, the maximum us-
able bandwidth ∆ωmax is limited by the existence of the chirp.
Thus, the optimized pulse width is proportional to

√
ω0/I .

Even though α is so large as to make the phase variation
small, the quadratic phase variation can still be large enough
to destroy the constructive addition of different frequency
components. As the absolute phase and the group delay have
no bearing on the pulse width, the quadratic phase in (2) is
the most relevant term in determining the temporal profile of
an attosecond pulse. Since a much higher laser intensity has
no practical importance, we cannot make the quadratic phase
variation any smaller. In order to reduce the pulse duration
further, it is evident that the chirp of the harmonics must be
compensated. The quadratic spectral phase variation, corres-
ponding to the linear chirp, is the same quantity as the group-
delay dispersion (GDD) of the material. If there is a material
whose GDD is negative while it is transparent in this wave-
length region, it can compensate the chirp of the attosecond
pulse. Therefore, we need to analyze the dispersion properties
of materials, the subject of Sect. 3.

3 Chirp compensation using material dispersion

The refractive index n(ω) of a material at the fre-
quency ω can be written as

n(ω) = 1 − δ(ω)+ iβ(ω). (4)

Though the imaginary part β(ω) of the refractive index is eas-
ily obtained from absorption experiments, the real part δ(ω) is
not so easy to obtain by a direct measurement. The interferom-
etry for measuring the refractive index of a material is not easy

to implement in the extreme-ultraviolet (XUV) and soft X-ray
regions. However the real part of the refractive index can be
determined by the Kramers–Kronig relation [14]:

δ(ω)− 2πnarec2

ω2
Z = − 2

πω2
P

∞∫
0

u3β(u)

u2 −ω2
du, (5)

where na is the atomic number density, re is the classical elec-
tron radius, c is the speed of light, and Z is the atomic number.
Here P denotes the principal value of the integral.

Figure 4a shows the typical refractive-index curve around
an absorption peak. The real part of the refractive index can
be divided into three regions – (I) the normal group delay with
positive GDD, (II) anomalous group delay, and (III) the nor-
mal group delay with negative GDD. The spectral phase shift
induced in a material with thickness z can be calculated as

∆ϕ̃filter = −ωδ(ω)z/c, (6)

and GDD is the second derivative of this spectral phase shift:

GDD = d2(∆ϕ̃filter)

dω2
. (7)

It must be noted that the negative GDD region appears just
after the absorption peak. Figure 4b shows the real and imagi-
nary values of the refractive index whose absorption is square-
well-shaped (corresponding to flat-top transmission). The
negative GDD region also appears just after the absorption
peak no matter what the shape is – either a single peak (a) or
a step (b). This can be explained by looking at the functional
form of the Kramers–Kronig relation. Due to the denomina-
tor, u2 −ω2, in the integral, the major contribution to the real
part of the refractive index comes from the region adjacent
to ω. Therefore, the behavior of the real part of the refractive

FIGURE 4 Real (solid line) and imaginary (dashed line) parts of the re-
fractive index for the cases of a single-peaked absorption and b square-well-
shaped absorption
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index just after the absorption peak is similar in both cases
(a) and (b). Nevertheless, the material with a square-well ab-
sorption is suitable due to its bandwidth-selection property.
Flat-top transmittance occurs in the frequency region where
there is no strong absorption. For example, tin (Sn) has a flat-
top transmittance range between M and N absorption edges.
There are several materials that have a flat-top-shaped trans-
mission, such as Zr, Ag, In, etc. All these materials are com-
monly used as X-ray filters and have transmission windows in
different frequency regions.

Here we consider two thin filters, Sn and Ti, to check
whether their negative GDD values are large enough to com-
pensate the chirp of an attosecond pulse. We can control the
GDD by adjusting the thickness of the material, because the
GDD is proportional to the thickness of the material. Since
the transmittance decays exponentially with increasing filter
thickness, material with a small GDD value cannot be used
for our purpose. Figure 5a shows the transmittance of 700-nm-
thick Sn and Ti, which are commonly used as X-ray filters. Sn
has a flat-top transmittance, which we consider to be the ideal
case as discussed previously. The GDD values of the two ma-
terials are shown in Fig. 5b. The average GDD of Sn between
95ω0 and 135ω0 is −0.0012 fs2. Since the chirp coefficient
calculated from Fig. 3 is 860 fs−2 and its inverse is 0.0012 fs2,
the Sn filter has a GDD value large enough for compensating
the chirp of the harmonics. On the other hand, the transmit-
tance of Ti gradually increases so that the GDD value is not
large enough to compensate the chirp of the harmonics in
the low-frequency region of the transmission window and the
GDD value is positive in the high-frequency region, as can be
inferred from Fig. 4. Therefore, we choose the Sn filter for the
chirp compensation of the harmonic radiation.

FIGURE 5 a Transmittance of 700-nm-thick Sn (solid line) and Ti (dashed
line). b GDD of 700-nm-thick Sn (solid line) and Ti (dashed line)

FIGURE 6 a Chirp compensation of positively chirped harmonic radia-
tion by a Sn X-ray filter. The spectral phase of the harmonic radiation with
a positive linear chirp centered at 107ω0, ϕ̃h(ω), and the spectral phase shift
induced by a 700-nm-thick Sn filter, ∆ϕ̃filter(ω), are shown, respectively, by
dotted and dashed lines. The spectral phase of the harmonic radiation after
the Sn filter is shown as the solid line. b Spectral intensity of the harmonic
radiation corresponding to Fig. 1b, transmitted through the 700-nm-thick Sn
filter. The inset shows the temporal profile of the single 48-as pulse obtained
after the Sn filter

The spectral phase of the harmonics ϕ̃h calculated using
(2) in the case of Fig. 1 is shown as a dotted line in Fig. 6a.
The spectral phase shift ∆ϕ̃filter induced by the 700-nm-thick
Sn filter material is also shown as a dashed line in Fig. 6a. The
spectral phase after passing through the 700-nm-thick Sn fil-
ter is the sum of these two. The result is shown by the solid
line in Fig. 6a. The spectral phase after passing through the
filter material is much less than π over the full width at half
maximum of the Sn filter transmittance. This implies that the
phase relation is suitable for the coherent addition of the har-
monic radiation. The temporal profile of the single attosecond
pulse is shown in the inset in Fig. 6b. The pulse duration of
the single harmonic pulse is 48 as. It may be compared with
the chirp-free Gaussian pulse. The bandwidth of the harmonic
spectrum is 26ω0 as shown in Fig. 6b. The width of the chirp-
free pulse is 45 as in the case of the Gaussian pulse whose
bandwidth is 26ω0. Therefore, the attosecond pulse passing
through the suitably chosen filter is almost chirp-free.

4 Conclusion

From the time–frequency analysis of harmonic ra-
diation, we showed that the harmonic radiation has a chirp
during a half optical cycle, which seriously affects the shape
of the attosecond pulse. We have shown that a 5-fs laser pulse
with an intensity above the saturation intensity can generate
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harmonic radiation with a broad continuum. The analysis of
the phase relation over the range of the continuum indicates
that we may reduce, but not eliminate, the chirp by prop-
erly choosing laser parameters. Since materials with nega-
tive GDD can compensate the chirp of harmonic radiation,
we have chosen an X-ray material with dispersion proper-
ties well suited for this purpose. This is done by analyzing
the refractive indices of materials obtained using the Kramer–
Kronig relation. It turns out that a material with a flat-top
transmission window is best suited for chirp compensation.
We show that a single 48-as pulse can be generated using this
technique.
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