
Case Study

Bias Correction Methods for Hydrologic Impact Studies
over India’s Western Ghat Basins
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Abstract: The regional climate models (RCMs) used in the analysis of the impact of climate variables on the hydrology of river basins needs
appropriate preprocessing (bias correction) to represent and reproduce future climate with a fair degree of accuracy. The performance of bias
corrections methods was assessed in this investigation on the basis of their ability to minimize error on climate variables and streamflow. This
work compares the performance of five bias correction methods applied for precipitation and four methods for temperature in modeling the
hydrology of the river catchments of the Western Ghats of India. TheWestern Ghats are a mountainous forest range along the entire west coast
of India that plays a major role in the distribution of Indian monsoon rains. Simulations were used to evaluate the performance of the bias
correction methods. Using raw RCM, bias corrected precipitation and temperature time series, streamflows were estimated by the soil and
water assessment tool (SWAT) hydrological model. The results indicated that the raw RCM-simulated precipitation was biased by 42%
and the temperature was biased by 12% across the catchments investigated. Subsequently, a bias of 65% was found in the streamflow.
The performance of the delta change correction method was consistently better for precipitation (with Nash-Sutcliffe efficiency, NSE >
0.75 for 5 catchments) and temperature (NSE ¼ 1) compared with other methods. Good performance was observed between the observed
and bias corrected streamflow (daily time scale) for the catchments Purna (NSE ¼ 0.97), Ulhas (NSE ¼ 0.64), Aghanashini (NSE ¼ 0.82),
Netravathi (NSE ¼ 0.89), and Chaliyar (NSE ¼ 0.90); low performance with an NSE of 0.3 was observed for the catchments Kajvi and
Vamanapuram. The methods failed for Malaprabha and Tunga catchments. The results indicate that the delta change correction
method performed best in analyzing the hydrological impact of climate variables on the windward side of Western Ghats of India.
DOI: 10.1061/(ASCE)HE.1943-5584.0001598. © 2017 American Society of Civil Engineers.
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Introduction

The impacts of climate change on the hydrology of river catch-
ments play an integral role in the field of water resources and
hydropower (Bates et al. 2008). The assessment of hydrological
impacts of climate change involves combining hydrological models
with the outputs of general circulation models (GCMs) (Graham
et al. 2007; Pechlivanidis et al. 2011). The GCMs incorporate
the major complexities of the global system and exhibit substantial
skill at the hemispheric and continental scales, but inherently are
unable to represent features at the catchment scale (Fowler et al.
2007). The hydrologic modeling of montane catchments requires
climate information on a fine scale and the GCMs do not represent
the altitude dependence of climatic variables (Seager and Vecchi
2010). The GCMs are not capable of providing reliable climate in-
formation on scales <200 km (Maraun et al. 2010) and, therefore,
GCM output is not combined directly with hydrological models
for impact assessment of climate change on river hydrology

(Chen et al. 2011b; Feddersen and Andersen 2005; Hansen
et al. 2006; Sharma et al. 2007).

The GCM information is transferred to finer scales by dynamic
downscaling, which uses a high-resolution regional climate model
(RCM) with the boundary conditions adopted from a driving
GCM (Dickinson et al. 1989; Giorgi 1990; Yang et al. 2010).
The topographical effects on precipitation and the mesoscale
patterns of local precipitation are represented more reliably in the
RCMs (Buonomo et al. 2007; Frei et al. 2003, 2006; IPCC 2007).
The World Climate Research Programme (WCRP) initiated the Co-
ordinated Regional Climate Downscaling Experiment (CORDEX)
to increase confidence in hydrological long-term predictions and
to improve the robustness of regional hydro-climatic variables.
The CORDEX generates ensembles of regional climate projections
at fine scale for the continents (called domains). The CORDEX
(CORDEX-SA/WAS-44) (CORDEX 2014) domain translates
regionally downscaled climate information into the monsoon of
South Asia (Chaturvedi et al. 2012; Giorgi et al. 2009).

The RCMs transfer large-scale GCM information to the
watershed/catchment/basin scale (spatial resolution of 10–50 km).
However, comparison of RCM outputs with reference period at
similar scale exhibits bias in the spatial distribution and magnitude
of precipitation and temperature (Foley 2010). The biases in RCMs
often are attributed to the imperfect parameterization of climate
processes in the model and by inappropriate boundary conditions
of GCM or reanalysis data (i.e., climate data produced by combin-
ing models and observations) used to run the RCM (Ehret et al.
2012; Teutschbein and Seibert 2012). The convective rainfall
is predominant in the tropical regions and owing to the subdaily
rainfall, the RCMs do not perform well in tropical climatic condi-
tions (Lenderink and van Meijgaard 2008). Studies show the lesser
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accuracy of the RCMs in representing convective and summer pre-
cipitation than the winter precipitation (Maraun et al. 2010). The
heavy precipitation is generally underestimated, whereas the light
precipitation events and precipitation frequencies are overestimated
(Fowler et al. 2007; Murphy 1999). The accuracy of RCMs in rep-
resenting climate, therefore, is regionally and seasonally dependent
(Kotlarski et al. 2005; Maraun et al. 2010). The present study is an
effort to evaluate the performance of the CORDEX-SA domain
over the western mountainous regions (Western Ghats) of India.

In light of the bias, preprocessing RCM outputs is a prerequisite
step before forcing the data on hydrological models to assess the
hydrological impacts of climate change. The bias correction meth-
ods are model output statistics that reproduce RCM misrepresen-
tation into historical observed statistics with a certain degree of
acceptance (Teutschbein and Seibert 2012). Different approaches
of bias correction were developed, ranging from sophisticated dis-
tribution mapping to simpler methods, such as linear scaling (Chen
et al. 2011a, 2013b; Iizumi et al. 2011; Lafon et al. 2013;
Mpelasoka and Chiew 2009; Piani et al. 2010; Ryu et al. 2009;
Salvi et al. 2011; Sharma et al. 2007; Teutschbein and Seibert
2012). The simpler methods involve shifting seasonal and/or
long-term annual mean to match with observations, and the sophis-
ticated methods involve adjusting the frequency distribution.
Although these methods preserve the variability of climate data
generated by RCM projections, the performance of the RCMs
depends on the governing atmospheric circulation of the region.
The evaluation of bias correction methods for a specific region
is essential for comparing the performance of an impact study.

Several studies explore the performance and evaluate the differ-
ent bias correction methods across the world, and report the ability
of the methods to minimize the RCM output errors (Bennett et al.
2011; Terink et al. 2009; Themeßl et al. 2011). Although the stan-
dard deviation and the mean of precipitation datasets are corrected
robustly in most cases, the kurtosis and skewness corrections are
sensitive to the selection of the calibration period and the bias
correction methods (Lafon et al. 2013).

The runoff projections for Australian catchments (Mpelasoka
and Chiew 2009) show the superiority of daily translation and daily
scaling methods over constant scaling in extreme runoff represen-
tation because these two methods take extreme daily rainfall into
consideration. The quantile mapping method improves the spatial
correlation between RCM and observed output (Bennett et al.
2011). The comparison of raw RCM results with a set of seven
statistical downscaling and error correction methods shows a very
good performance of the local intensity (LI) and the quantile map-
ping method for daily precipitation over the Alps region. The best
performance in downscaling precipitation extremes is by the quan-
tile mapping method (Themeßl et al. 2011). A great deal of uncer-
tainty always creeps into the simulation of streamflow under
changed climate conditions because of empirical downscaling
methods (Chen et al. 2013b). The study was incomplete owing
to the fact that it was carried out on only two basins of North
America. The complete study (Chen et al. 2013a) calibrated the
hydrological models with direct RCM output and also evaluated
the performance of six bias correction methods over 10 North
American river basins. The comparison showed better performance
of distribution-based methods than mean-based methods.

The selection of bias correction method plays a major role in the
response of extreme hydrological events. Nonlinear methods are
quite effective in reducing errors, whereas the gamma-based quan-
tile mapping gives very good results when the precipitation datasets
(observed and modeled) follow a gamma distribution (Lafon et al.
2013). The distribution mapping was established on the gamma
distribution and has performed well, even for heavy precipitation

and drought index apart from daily precipitation over Europe
(Piani et al. 2010). The most widely used distribution for fitting
daily precipitation is the gamma distribution (Block et al. 2009;
Ines and Hansen 2006; Katz 1999; Watterson and Dix 2003).
The limitation of the gamma distribution is that it cannot adequately
represent the extreme tail of precipitation’s distribution at a daily
time step. To overcome such limitations, Vrac and Naveau (2007)
used a mixed distribution involving Pareto distribution and gamma
distribution. The distribution mapping and the delta change
methods did not differ in projecting hydrological statistics for a
catchment located on the west coast of Denmark (van Roosmalen
et al. 2011).

The performance of the methods also depends on the size of the
catchments owing to the spatial average of RCM outputs (large-
scale, mesoscale, and small-scale). One of the most comprehensive
studies in terms of bias correction methods for hydrological
impacts of climate change was carried out on five catchments in
Sweden (Teutschbein and Seibert 2012). The study assessed three
methods of bias correction for temperature and four methods of
bias correction for precipitation. The distribution mapping method
was found to perform the best for hydrological impact quantifica-
tion and climate projections. Although the study was thorough in
terms of method and climatic conditions, the size of the catchments
was small and ranged from 147 to 293 km2.

The Western Ghats of India are listed as a UNESCO World
Heritage Site and are classified as one of the eight hottest hotspots
of biological diversity in the world (UNESCO 2013). Several stud-
ies are being carried out to assess the hydrologic impact of climate
change in the region by using the outputs of RCM forced on hydro-
logic models. Precipitation is an integral part of the hydrological
studies, and the simulation of precipitation by RCM is more diffi-
cult than temperature. The reliability of the studies, therefore, is
critically dependent on the ability of the RCM to represent the
southwestern monsoon precipitation and regional dependency in
the performance of the bias correction methods. It is essential to
study the regional variability of various bias correction methods
in quantifying hydrologic impacts. This work evaluated the perfor-
mance of five methods of bias correction for precipitation and four
methods of bias correction for temperature along the Western Ghats
of India with regard to hydrological modeling. The spatial variabil-
ity of the performance was assessed on nine river catchments
spread across the topographic conditions and climate zones of
the Western Ghats of India.

Study Area

Nine river catchments originating in the Western Ghats of India
were selected for this study (Fig. 1), covering five climate
zones on the basis of the revised Thornthwaite-type global climate
classification (Feddema 2005): per-humid (A), humid (B3 and
B4), dry subhumid (C1), and moist subhumid (C2). The Western
Ghats of India are a mountainous, tropical forest range extending
approximately 2,300 km parallel to the entire west coast of India
(Fig. 1). It is a stable land mass of Archaean and Precambrian rock
formations with an elevation exceeding 2,500 m above mean sea
level (MSL) at some places. The study area extends from 8° 30′ N
to 21° 0′ N latitude and 73° 0′ E to 77° 30′ E longitude, and covers
districts in four states of India: Gujarat, Maharashtra, Karnataka,
and Kerala.

The Indian monsoon rains approach the Indian subcontinent si-
multaneously from the Arabian Sea through the Western Ghats, and
from the Bay of Bengal through Gangetic West Bengal by the end
of May or beginning of June, and cover the entire country by the
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end of July. The strip of land between the Western Ghats and the sea
coast (windward side) has a width ranging from 100 to 200 km. The
region receives an annual average rainfall of approximately
3,000 mm near the sea coast to approximately 6,000 mm near
the Ghats. The maximum rainfall over the Western Ghats is approx-
imately 7,000 mm. The eastern part of the Western Ghats is a pla-
teau region with a gentle slope toward the Bay of Bengal and an
annual average rainfall of approximately 1,500 mm, which de-
creases toward the east. The variation of topography and precipi-
tation in the Western Ghats spawns a wide variety of vegetation
varying from evergreen forests (west side) and dry deciduous
(higher altitudes), to shrub vegetation on the east side. In the
present study, the river catchments were selected to represent
the entire range of topography of the Western Ghats of India, such
as westerly mountain area to flatter terrains. The basic information
of the nine river catchments is presented in Table 1. The catchment
areas range between 287 and 3,351 km2, representing small to mes-
oscale catchments across the Western Ghats. The average annual

maximum and minimum temperatures range from 35 to 41.5°C,
and 6 to 12°C, respectively.

Data Used

The gridded data on precipitation (0.25° × 0.25°) and temperature
(1° × 1°) were procured from the India Meteorological Department
(IMD). The processing of the gridded data may be found elsewhere
(Pai et al. 2014). The discharge data were obtained from the
India Water Resources Information System and from the Water
Resources Development Organization (WRDO), Government of
Karnataka, India. The RCM-simulated precipitation and tempera-
ture were obtained from CORDEX. The South Asian domain
(WAS-44) (CORDEX 2014) of the CORDEX experiment has 11
suites that constitute a combination of various RCMs, driven by
the initial and boundary conditions of different GCMs. Although
four suites provide bias corrected data, they employ distribution-
based correction methods.

Fig. 1. Location map of the nine river catchments

Table 1. Basic Information on the River Catchments

State Catchment name Climate zone
Area
(km2)

Average annual rainfall
(mm) Flow data availability

Gujarat Purna Dry subhumid (C1) 1,655 1,600 1971–2000
Maharashtra Ulhas Humid (B4) 886 3,800 1982–2011

Kajvi Humid (B4) 287 3,600 1992–2010
Karnataka Malaprabha Moist subhumid (C2) 428 2,800 1977–1996

Aghanashini Per humid (A) 1,295 3,700 1989–2002
Tunga Per humid (A) 2,922 4,700 1973–2000

Netravathi Per humid (A) 3,351 3,700 1980–1995
Kerala Chaliyar Dry subhumid (C1) 1,953 2,700 1981–2000

Vamanapuram Humid (B3) 541 1,800 1990–2011

© ASCE 05017030-3 J. Hydrol. Eng.
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The Rossby Centre Regional Climate Model, RCA4, developed
at the Rossby Centre, Norrköping, Sweden, and downscaled to a
subset ofGCMsimulations from theCoupledModel Intercomparison
Project Phase 5 (CMIP5) (Taylor et al. 2012) was used in this study.
The data was available at a horizontal spatial resolution of 0.44° ×
0.44° (∼50 km) and daily temporal resolution. Of the 11 experiment
suites of CORDEX, the RCA4 simulations were selected for the
present study because it demonstrated good performance (close prox-
imity to observed data) in the complex mountainous topography of
India (Ghimire et al. 2015). For catchments smaller than one RCM
grid box, precipitations were basin averaged. The averaging of grid
points is a requisite for watersheds of smaller size and also helps
in elimination of the grid-point numerical effect of computational
schemes in climate models. The averaging concept also was used
in studies carried out elsewhere (Teutschbein and Seibert 2012).

Methodology

Bias Correction

The bias correction methods adopted and compared in this study
are the linear scaling (LS), delta change correction (DC), local

intensity (LI) scaling, power transform (PT), variance scaling
(VS), and the distribution mapping (DM). These six methods
may be classified into five bias correction methods applied for
precipitation (LS, DC, LI, PT, and DM) and four methods for
temperature (LS, DC, VS, and DM). The bias corrections were
carried out daily. A brief description of the methods is presented
in Table 2. The complete details of the bias correction methods
can be found in Teutschbein and Seibert (2012) and Chen
et al. (2013a).

The bias correction methods were evaluated by the split-
sampling and cross-validation approaches (Bennett et al. 2011).
The calibration was carried out using four steps: (1) separation
of the observed and RCM-simulated meteorological variables
(precipitation and temperature) into 40-year (1951–1990) and
15-year (1991–2005) periods; (2) calibration using 40 years of data
and validation using 15 years of data; and (3) in an opposite
sense, 15 years (1951–1965) were used to calibrate and 40 years
(1966–2005) were used to validate. The split-sampling and
cross-validation approaches are a common practice in hydrological
studies. It helps in reducing the risk of over fitting the model to a
period and the effects of interannual variation of the climate system.
The bias corrected precipitation and temperature were compared
with the observed values.

Table 2. Brief Description of the Bias Correction Methods

Serial
number

Bias correction
method Pros Cons References

1. Linear
scaling (LS)

A mean monthly correction factor is used for the
daily precipitation. It is the simplest bias
correction method.

The daily precipitation sequence is the same as
that of the RCM-simulated data (usually, too
many wet days are simulated).

Lenderink and
van Meijgaard (2008) and

Teutschbein and
Seibert (2012)The frequency distribution of the precipitation

is not accounted.
The temporal structure of the precipitation is
not adjusted.

2. Delta change
correction (DC)

The RCM-simulated anomalies are
superimposed over the observed time series.

It does not account for potential future changes
in climate dynamics.

Teutschbein and
Seibert (2012)

It is a stable method because it uses observed
data as the basis and produces future time series
with dynamics similar to current conditions.

Major events (e.g., heavy precipitation or hot
days) will change by the same amount as all
other events.

3. Local intensity
scaling (LI)

The frequency of wet days is corrected and a
monthly correction is applied to the precipitation
dataset.

The changes in the frequency distribution of
precipitation are not accounted.

Schmidli et al.
(2006)

No adjustment is made to the temporal
structure of daily precipitation occurrence.

4. Power
transform (PT)

The mean and variance of data are adjusted,
i.e., corrects percentiles and the coefficient of
variation to some extent.

The probability of dry days and precipitation
intensity is not corrected.

Leander and Buishand,
(2007) and Leander

et al. (2008)The nonlinear transformation does not
perform well when the bias in the frequency of
wet days is large.
Limited to precipitation because of power
function.

5. Variance
scaling (VS)

The mean and the variance of temperature time
series are corrected.

The nonlinear transformation does not
perform well when the bias in the frequency of
wet days is large.

Chen et al.
(2011a, b)

The correction factors are assumed to remain the
same for future conditions, but allow for changes
in response to control and scenario run.

6. Distribution
mapping (DM)

The RCM-simulated precipitation is corrected on
the basis of a gamma distribution. The frequency
of precipitation occurrence is corrected using the
LI method.

The stationarity assumption that the same
correction algorithm applies to both current
and future climate conditions.

Ines and Hansen (2006),
Piani et al. (2010), and

Teutschbein and
Seibert (2012)

It corrects most of the statistical characteristics
and has the narrowest variability ranges,
combined with the best fit of the ensemble mean.

The performance depends on whether the
observed and RCM-simulated precipitation
follows the gamma distribution (or not).

© ASCE 05017030-4 J. Hydrol. Eng.
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Hydrological Simulation

After correcting for bias, the precipitation and temperature data
were used to drive the soil and water assessment tool (SWAT)
model and simulate daily streamflow for 55 years (1951–2005).
The precipitation and temperature output of the raw RCM (without
bias correction) was used to run the hydrological model. The
streamflow, simulated using bias corrected variables and raw RCM,
was compared with the reference streamflow.

The Advanced Spaceborne Thermal Emission and Reflection
Radiometer Global Digital Elevation Model Version 2 (ASTER
GDEM 2) (Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena,California)was used todelineate thewatershed and
to analyze the drainage patterns of the land surface terrain. The Soil
Conservation Service curve number procedure (USDA 1986) was
used in this study to estimate the streamflow in the SWAT model.
The potential evapotranspiration was estimated by the Hargreaves
method (Hargreaves and Samani 1985). The Hargreaves method is
a temperature-based method and has demonstrated the ability to give
accurate results compared with standard methods (Allen et al. 1998).

The SWAT hydrological model was calibrated and validated us-
ing the discharge data. The models were calibrated on a daily time
step to achieve robust calibration and to avoid averaging of data
errors over monthly calibration. The split-sampling approach was
adopted with the available data. The guidelines on optimal Nash-
Sutcliffe efficiency (NSE) and coefficient of determination (R2)
and their ranges for the hydrologic modeling were given by Moriasi
et al. (2007). The sequential uncertainty fitness version 2 (SUFI-2)
algorithm was employed and the SWAT model was subjected to un-
certainty analysis. The R-factor (Abbaspour 2013) was used to ascer-
tain the degree of uncertainty and strength of calibration. The SUFI-2
algorithm was selected specifically for the present study because
parameter uncertainty would account for all sources of uncertainties,
including uncertainty in conceptual model, measured data, driving
variables (e.g., rainfall), and parameters (Abbaspour 2013).

Results and Discussion

Climate Simulation

The rainfall effects on the overall hydrology of the catchment and
successful simulation of wet and dry days was very important in the
impact studies. The factors affecting the performance possibly

could be the location, topography, and catchment area of the rivers.
The elevation of Western Ghats of India varies and is approximately
2,695 m above MSL; the Ghats are close to the sea coast at certain
locations. The bias in the RCM precipitation was calculated for all
the months, and the results of monsoon months (June–September)
are presented in Fig. 2. The results obtained across the river catch-
ments indicated the inability of the raw RCM in the representation
of Indian southwest monsoon. The raw RCM tended to underesti-
mate the heavy rainfall events leading to negative values. The over-
estimation in theVamanapuramRivermay be because it is one of the
southernmost rivers of India and is influenced by both the southwest
and northeastmonsoons. It may be, therefore, that the hydrology of a
catchment is very sensitive to precipitation and a small bias could
lead to large deviation in the hydrological components.

The absolute relative error (ARE) for precipitation is defined as
jðPsim − PobsÞ × 100=PobsÞj of mean wet-day precipitation (pre-
cipitation intensity >2.5 mm=day), where Psim and Pobs represent
simulated precipitation and observed precipitation, respectively.
Fig. 3(a) presents the boxplot of the ARE for mean wet-day precipi-
tation (annual precipitation). The results clearly show the bias of raw-
RCM precipitation when compared with the observed precipitation.
The LS, LI, PT, and DM methods did not improve the statistic of
mean wet-day precipitation. The LS and LI methods applied correc-
tions tomonthlymeanprecipitation and tended to overestimate thewet
days. TheDCmethod corrected the frequency ofwet days because the
anomalies between the scenario runs were superimposed over the
observed time series. The DC method improved the mean precipita-
tion of wet days significantly. The ARE for the LS, LI, PT, and DM
methodswere 24.78, 24.81, 28.30, and 28.74%, respectively. TheDC
method tended to perform better than other methods consistently.

The aim of the bias correction methods was not to correct the
variance of precipitation (on a daily basis). However, the variance
was affected when mean precipitation was corrected. The ARE for
the standard deviation of daily precipitation was calculated and is
presented in Fig. 3(b). The standard deviation of the raw RCM was
biased similar to the mean precipitation. The bias correction meth-
ods corrected the standard deviation of precipitation to a certain
degree. The LS, LI, PT, and DM methods performed equally in
the correction of standard deviation. The DC method performed
the best in improving the ARE of standard deviation. The perfor-
mance evaluation metrics for observed and bias corrected daily pre-
cipitation time series are presented in Table 3. The DC method
performed well with NSE > 0.75 for the Purna, Ulhas, Kajvi,

Fig. 2. Bias of raw-RCM precipitation during monsoon season

© ASCE 05017030-5 J. Hydrol. Eng.
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Aghanashini, Netravathi, and Chaliyar catchments. The perfor-
mance of the methods was poor for the remaining three catchments,
with NSE < 0.50. This indicated that the bias correction methods
that use raw-RCM anomalies for correcting the observed data per-
formed better in the correction of standard deviation rather than the
direct use of RCM simulations for future conditions. The extremes
in daily precipitation were not considered specifically in the LS and
LI methods. The precipitation during the monsoon (accounted for
approximately 80% of annual precipitation) and post-monsoon

(10–15% of annual precipitation) were corrected with the same fac-
tors calculated for winter and summer (light precipitation). It was
observed, therefore, that heavy precipitation was not satisfactorily
corrected for bias.

The PT method uses the power function and the degree of cor-
rection depends on the scaling parameter, which is a function of the
exponent. The exponent was estimated to be large for most of the
months in this study, indicating underestimation of the coefficient
of variation (CV) of observed precipitation on a daily time step.

Fig. 3. Boxplot of the absolute relative error (ARE) for (a) mean wet-day precipitation (annual precipitation); (b) standard deviation of daily
precipitation

Table 3. Performance of Bias Correction Methods in Correcting Daily Precipitation Time Series

Catchment

Raw RCM LS DC LI PT DM

NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2

Purna −0.09 0.01 −0.79 0.04 0.96 0.98 −0.81 0.04 −0.92 0.03 −1.03 0.02
Ulhas 0.00 0.05 −0.14 0.14 0.95 0.96 −0.15 0.13 −0.59 0.08 −0.44 0.08
Kajvi 0.01 0.08 −0.48 0.16 0.75 0.92 −0.48 0.16 −0.87 0.12 −0.56 0.13
Malaprabha −0.27 0.02 −0.47 0.15 0.43 0.86 −0.52 0.14 −1.61 0.07 −2.08 0.06
Aghanashini 0.01 0.06 −0.19 0.17 0.76 0.82 −0.21 0.17 −0.51 0.13 −0.56 0.10
Tunga −0.15 0.01 −0.64 0.16 0.44 0.83 −0.67 0.16 — — −1.75 0.09
Netravathi −0.04 0.03 −0.07 0.21 0.92 0.94 −0.10 0.20 −0.48 0.14 −0.72 0.11
Chaliyar −0.41 0.01 −0.27 0.13 0.73 0.91 −0.33 0.13 −1.14 0.07 −1.64 0.06
Vamanapuram −0.96 0.00 −0.38 0.01 0.41 0.54 −0.50 0.01 −1.15 0.00 −1.67 0.00

Note: Bold indicates good performance.

© ASCE 05017030-6 J. Hydrol. Eng.
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The DC method performed better, although the bias in heavy pre-
cipitation was dependent on RCM. The DC method reduced the
bias to a good degree and indicated the robust performance in
correcting the bias of daily precipitation along the Western Ghats
of India.

Effort was made to figure out the reason behind the satisfactory
and poor performance of bias correction methods. The precipitation
in the plateau region on the leeward side was more difficult to
model than the precipitation on the windward side of the moun-
tain. The rivers, such as the Purna (1,387 m above MSL to 9 m
above MSL), the Ulhas (1,083 m above MSL to 4 m above
MSL), the Aghanashini (797 m above MSL to 0 m above MSL),
the Netravathi (1,700 m above MSL to 0 m above MSL), and the
Chaliyar (2,600 m above MSL to 1 m above MSL), which flow
across larger elevation difference on the windward side of
the Western Ghats, showed good performance (NSE > 0.64;
R2 > 0.84). Also, the catchment areas of these rivers are greater
than 850 km2. The Malaprabha and Tunga rivers originate on the
leeward side of the Western Ghats and flow in the eastern direction

to join the Krishna River. Although, the sizes of the Malaprabha
and Tunga are 428 and 2,922 km2, respectively, the performance
of the bias correction method was not satisfactory for these catch-
ments. This may be because the RCMs were forced to work from a
lower elevation to a higher elevation. Hence, the model was more
appropriate to simulate orographic precipitation than the precipita-
tion in the plateau regions (leeward side of Western Ghats).

The temperature simulated by the raw RCM was biased com-
pared with the observed temperature. The extent of overestimation
varied from 1 to 12% across the catchments investigated. In the
Netravathi catchment, the RCM underestimated the temperature
by 6%. The LS, DC, VS, and DM methods were used to correct
the bias in the temperature datasets. The mean monthly variation of
temperature and the performance of the bias correction methods
across the nine catchments is presented in Fig. 4. All the bias cor-
rection methods performed well in correcting the temporal agree-
ment of temperature on a monthly time step. The daily temperature
was evaluated and the DC method was found to be very accurate
(NSE ¼ 1) across all the nine catchments (Table 4). The VS and

Fig. 4. Mean monthly temperature for the river catchments

Table 4. Performance of Bias Correction Methods in Correcting Daily Temperature Time Series

Catchment

Raw RCM LS DC VS DM

NSE R2 NSE R2 NSE R2 NSE R2 NSE R2

Purna 0.03 0.56 0.38 0.53 1.00 1.00 0.62 0.65 0.62 0.66
Ulhas −1.53 0.47 0.31 0.48 1.00 1.00 0.57 0.61 0.57 0.61
Kajvi −0.60 0.33 0.09 0.37 1.00 1.00 0.41 0.49 0.42 0.49
Malaprabha −2.41 0.36 0.16 0.39 1.00 1.00 0.44 0.51 0.44 0.51
Aghanashini 0.16 0.33 0.27 0.44 1.00 1.00 0.44 0.51 0.44 0.51
Tunga −2.58 0.24 0.29 0.46 1.00 1.00 0.54 0.58 0.54 0.58
Netravathi −0.56 0.35 0.31 0.46 1.00 1.00 0.42 0.51 0.42 0.50
Chaliyar −2.40 0.26 0.32 0.48 1.00 1.00 0.57 0.60 0.56 0.60
Vamanapuram −0.59 0.22 0.03 0.31 1.00 1.00 0.22 0.36 0.21 0.36

Note: Bold indicates good performance.

© ASCE 05017030-7 J. Hydrol. Eng.

 J. Hydrol. Eng., 2018, 23(2): 05017030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l I
ns

tit
ut

e 
T

ec
hn

ol
og

y 
- 

Su
ra

th
ka

l o
n 

01
/0

3/
18

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



DM method performed satisfactorily for the Purna catchment,
whereas the remaining methods did not perform well. The mean
monthly time series tended to conceal the bias and, hence, the per-
formance of the bias correction methods on the monthly time step
was good. The evaluation of a daily time series provided a clear
picture.

Flow Simulation

The details of calibration and validation of the SWAT hydrological
model are presented in Table 5. The calibration and validation were
carried out using daily average flow. Fig. 5 compares the annual
cycle of streamflow for the observed (Qobs) and simulated (Qsim)
during the validation period. The minor deviations observed in
the hydrographs might be introduced by the hydrological model.
The NSE values across the nine basins ranged between 0.71 and
0.87 for the calibration period, and between 0.67 and 0.87 for
the validation period (Table 5). The NSE values indicated a good
fit of the model because the calibration was done on a daily
scale and represented the good quality of meteorological inputs.

The R-factor for the nine catchments ranged from 0.05 to 0.37,
indicating a good strength of calibration.

Efficacy of Bias Correction Methods in Representing
Streamflow

The annual hydrographs for the river catchments under investiga-
tion are presented in Fig. 6. The streamflow simulated using the
raw RCM did not match accurately with the reference streamflow
of the river catchments of the Western Ghats of India. Chen et al.
(2013a) also reported that the streamflow generation by raw RCM
was generally better in snow-dominated basins than in basins that
have no snowfall. Particularly, the RCM could not represent the
southwestern monsoon (June to September) in this study. Because
the southwestern monsoon contributes to approximately 80% of
the total rainfall over the Western Ghats of India, it plays an im-
portant role in the hydrological impact studies. The peak discharge
was underestimated significantly in all the catchments, except for
Chaliyar and Vamanapuram. The temporal agreement of stream-
flow was improved by all the bias correction methods across the

Table 5. Performance of SWAT Hydrological Model during Calibration and Validation (Daily Streamflow)

State Catchment name Calibration period NSE (calibration) Validation period NSE (validation) R-factor

Gujarat Purna 1971–1990 0.79 1991–2000 0.70 0.36
Maharashtra Ulhas 1982–2000 0.73 2001–2011 0.67 0.17

Kajvi 1992–2001 0.74 2002–2010 0.78 0.10
Karnataka Malaprabha 1977–1990 0.87 1991–1996 0.77 0.05

Aghanashini 1989–1996 0.84 1997–2002 0.85 0.04
Tunga 1973–1992 0.87 1993–2000 0.87 0.07

Netravathi 1980–1995 0.85 1991–1995 0.87 0.37
Kerala Chaliyar 1981–1995 0.78 1996–2000 0.79 0.18

Vamanapuram 1990–2005 0.71 2006–2011 0.83 0.05

Fig. 5. Performance of SWAT model during validation period

© ASCE 05017030-8 J. Hydrol. Eng.

 J. Hydrol. Eng., 2018, 23(2): 05017030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l I
ns

tit
ut

e 
T

ec
hn

ol
og

y 
- 

Su
ra

th
ka

l o
n 

01
/0

3/
18

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Western Ghats. A reasonably good match with the reference
streamflow was seen with the use of bias corrected climate varia-
bles. The evaluation metrics and hydrological statistics served as
better tools in assessing the differences and are described in sub-
sequent sections.

The AREs for the mean daily discharge were calculated for the
simulations with and without correction of bias and are shown in
Fig. 7. As expected, the mean discharge without bias correction
(raw RCM) was very biased, with ARE of 65%. The mean dis-
charge was improved to a small degree by all the methods. The
ARE for LS and LI method was 57%, 52% for PT method, and
52% for DM method. The DC method with an ARE of 44%

performed better than the remaining methods. Although all the
methods of bias correction differed in the way they dealt with data,
there was no obvious difference in the bias correction of the LS, LI,
PT, and DM methods. There was a presence of outliers (especially
in the DC method), and their mere presence indicated that the
method may not have performed well on at least one basin.

The AREs for high-flow and low-flow seasons are presented in
Fig. 8. During the high-flow seasons (monsoon and post-monsoon),
the ARE was very high for the raw RCM. The ARE was calculated
to be 71 and 91% during high-flow season [Fig. 8(a)]. The ARE
during the monsoon season for the LS and LI methods was 68%,
and that for the PT and DM methods was 61%. The DC method

Fig. 6. Annual hydrographs for the river catchments

Fig. 7. Boxplot of the ARE of the mean daily discharge

© ASCE 05017030-9 J. Hydrol. Eng.
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significantly improved the ARE during monsoon (45%) and post-
monsoon (35%). The DC method was unable to perform better dur-
ing monsoon and post-monsoon seasons because of the inherent
property of RCMs to underestimate Indian southwest monsoon
rainfall. Fig. 8(b) presents the ARE during low flow (lean-season
flow), i.e., winter and summer. The ARE during the lean season
was very large and the bias correction methods marginally reduced
the error. The ARE for DC method was 29 and 17% during winter
and summer, respectively. The variability across river catchments
was small and indicated that all the bias correction methods im-
proved the representation of low flows. Although all the methods

performed equally well, the DC method was the best compared
with the others.

The performance evaluation metrics for a daily streamflow time
series across the nine river catchments is presented in Table 6. The
NSE and R2 between streamflow simulated by the raw RCM and
reference streamflow was not good. The study by Chen et al.
(2013a) attempted to eliminate the bias of raw RCM by calibrating
the hydrological model with direct use of raw RCM. Minor im-
provement in the simulation of streamflow was reported from
the investigation. The direct use of raw RCM in the SWAT hydro-
logical model did not improve the simulation of streamflow in this

Fig. 8. Boxplots of the ARE of discharge for (a) high-flow season; (b) low-flow season

Table 6. Performance of Bias Correction Methods in Correcting Daily Streamflow Time Series

Catchment

Raw RCM LS DC LI PT DM

NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2

Purna −0.09 0.00 −1.02 0.01 0.97 0.97 −1.02 0.01 −0.96 0.02 −1.15 0.00
Ulhas −0.04 0.06 −0.47 0.16 0.64 0.86 −0.47 0.16 −2.32 0.07 −0.74 0.10
Kajvi 0.03 0.14 −0.63 0.24 0.37 0.82 −0.63 0.24 −1.39 0.17 −0.85 0.17
Malaprabha −0.06 0.08 −0.53 0.30 −0.19 0.80 −0.53 0.29 −2.06 0.16 −3.79 0.08
Aghanashini 0.05 0.09 0.13 0.26 0.82 0.84 0.12 0.26 −0.28 0.17 −0.36 0.13
Tunga −0.02 0.03 −0.67 0.26 −0.18 0.72 −0.66 0.26 — — −2.29 0.13
Netravathi −0.01 0.07 0.13 0.27 0.89 0.90 0.12 0.26 −0.30 0.17 −0.53 0.13
Chaliyar −0.57 0.02 0.06 0.25 0.90 0.96 0.10 0.14 −0.54 0.14 −0.84 0.11
Vamanapuram −1.32 0.01 −0.05 0.03 0.34 0.35 −0.08 0.03 −0.37 0.01 −0.47 0.01

Note: Bold indicates good performance.

© ASCE 05017030-10 J. Hydrol. Eng.
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study. Therefore, the calibration of the SWAT model using raw-
RCM simulated streamflow was not attempted. The LS, LI, PT,
and DM methods failed to accurately represent the streamflow
of the catchments in the Western Ghats.

The DC method performed well in correcting the bias of cli-
matic variables (precipitation and temperature) and, subsequently,
the streamflow simulated using the DC method data performed
well. Table 6 shows that the streamflow using the DC method data
yielded good results for five catchments. The NSE for Purna,
Ulhas, Aghanashini, Netravathi, and Chaliyar were found to be
0.97, 0.64, 0.82, 0.89, and 0.90, respectively. The performance
of the DC method was poor in the Kajvi and Vamanapuram catch-
ments with NSE of 0.37 and 0.34, respectively. The DC method
failed to perform in the Malaprabha and Tunga catchments. The
R2 was very good (>0.70) in most of the catchments, even when
NSE was poor. This was because the statistical goodness-of-fit was
good, but the bias correction methods were not capable of cor-
recting the residual variance (noise) of the climatic variables
(especially precipitation). The NSE determined the magnitude of
the residual variance compared with the measured data variance.
Hence, the inability of the bias correction methods in correcting
the variance was highlighted in four of the catchments investigated,
i.e., Kajvi, Vamanapuram, Malaprabha, and Tunga.

The bias correction methods did not work when the grid points
were away from the basin/catchment. The continental circulation
could be accurately modeled, whereas, the local storm paths could
completely miss a watershed because the storms may occur north or
south of grid points. To establish the basis of the bias correction
methods, it is required to have a consistent temporal structure of
the precipitation and the bias must remain constant to a certain de-
gree. Most of the bias correction methods assume a constant bias
and very few studies consider the temporal structure. The perfor-
mance of bias correction methods was studied in the past by using
the boundary conditions given by reanalysis data (Chen et al.
2013a; Teutschbein and Seibert 2012). When an RCM is driven
by a GCM, the RCM bias is superimposed on the GCM bias at
the boundary conditions. Also, the RCMs driven by GCMs tend
to conceal the bias in the temporal structure. Therefore, when
the rest of the bias correction methods failed to perform for the
Western Ghats of India, the delta change method of bias correction
performed very well.

Conclusions

This work attempted to evaluate the appropriate bias correction
methods for the catchments spread over the temperate zone along
the west coast of India. Because the Indian economy is dependent
primarily on the monsoon rains, the hydrological impact of climate
variables play a crucial role. The Western Ghats are the tropical
forest ranges covering the entire west coast of India. Many rivers
originate in these mountain ranges and flow west or eastward to
join the Arabian Sea and the Bay of Bengal, respectively. The bias
correction methods investigated in this work included simple meth-
ods, such as LS to complex distribution mapping method. The per-
formance of the correction methods was assessed on the basis of the
precipitation and temperature simulated by an RCM, driven by
GCM. The following conclusions may be drawn from this study.

The climatic variables (precipitation and temperature) simulated
by the RCM are always biased and cannot be directly forced on
hydrological models. The importance of correcting the frequency
of wet days plays a major role in the projection of climate and in the
selection of appropriate bias correction methods. The distribution-
based methods may not always be superior to the mean-based

methods in hydrological simulations and projecting climate. The
bias correction methods may not hold well when the temporal
structure of climatic variables is inaccurately reproduced by the cli-
mate models. This is particularly true when the bias correction is on
a daily time step.

The raw-RCM precipitation was very biased compared with the
observed precipitation. No improvement was observed in the sta-
tistic of mean wet-day precipitation using the LS, LI, PT, and DM
methods; the DC method was the exception. The DC method cor-
rected the frequency of wet days because the anomalies between
the simulated results were superimposed over the observed time
series, improving the mean wet-day precipitation significantly.
The NSE for Purna, Ulhas, Kajvi, Aghanashini, Netravathi, and
Chaliyar were 0.96, 0.95, 0.75, 0.76, 0.92, and 0.73, respectively.
Comparing the season-wise performance, the raw RCM tended to
underestimate the heavy rainfall events leading to negative values.
The DC method significantly improved the ARE during monsoon
(45%) and post-monsoon (35%) compared with other methods.
However, the method was unable to perform exceptionally well
during monsoon and post-monsoon seasons because of the inherent
property of RCMs to underestimate southwest Indian monsoon
rainfall. The temperature was simulated better than precipitation
in the climate models. The DC method was capable of representing
the mean daily temperature accurately.

The streamflow estimated using the DC method yielded
good results for five catchments. The NSE for Purna, Ulhas,
Aghanashini, Netravathi, and Chaliyar were 0.97, 0.64, 0.82, 0.89,
and 0.90, respectively. Hence, the performance of theRCMwas better
for the catchments on the windward side of the Western Ghats that
flow across larger elevation differences. The performance of the
DC method was poor in the Kajvi and Vamanapuram catchments,
with NSE of 0.37 and 0.34, respectively. The DC method failed to
perform in the Malaprabha and Tunga catchments, which are on
the leeward side of the Western Ghats. When the RCM was applied
away from computational boundaries, i.e., in the case of plateau
regions, the problem was more pronounced. Hence, the RCM was
more appropriate to simulate orographicprecipitation than theprecipi-
tation in the plateau regions (leeward side of Western Ghats).

The overestimation in the Vamanapuram River may be because
it is one of the southernmost rivers of India and is influenced by
both the southwest and the northeast monsoons. The hydrology of a
catchment is very sensitive to precipitation and a small bias could
lead to large deviation in the hydrological components. This work
concluded that the delta-correction method is the most appropriate
method of bias correction for the impact analysis of climate vari-
ables for the catchments of the Western Ghats. Hence, there is a
need for validation of preprocessing methods prior to studying
the impacts of climate variables specific to the region, depending
on its climate pattern.
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