Exploring the Potential of Copper Slag and Quartz as Fine Aggregate Replacements in Concrete: A Comprehensive Study
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Abstract
In the realm of civil construction, river sand is an essential ingredient that cannot be overlooked. With the ever-increasing surge in construction activities, the demand for river sand has surged in tandem, resulting in its escalating scarcity, and subsequently, its price surge across the entire nation. This study delves into the utilization of copper slag as a viable alternative in the production of cement mortars, particularly as a partial replacement for fine aggregates. Experiments were conducted on concrete cubes and cylinders to determine the compressive strength and split tensile strength, respectively. Five cubes and cylinders were tested after 7, 14, and 21 days of curing. The extensive characterization of copper slag was conducted, encompassing its chemical composition, mineralogical attributes, and size distribution. The findings highlight that mortars containing copper slag exhibit superior compression resistance compared to the river sand-based mortars. Specifically, the 50% replacement of river sand with a blend of copper slag and quartz demonstrates the highest strength, surpassing the other compositions. Notably, the partial substitution of sand with copper slag outperforms both quartz and sand individually, with the optimal strength achieved at a 50% replacement rate. Copper slag, with its pozzolanic properties, showed a greater strength-enhancing potential, while quartz also exhibited positive effects. These findings are promising for optimizing concrete mix designs, reducing the environmental impacts caused by industrial by-products, and exploring natural alternatives. © 2024 by the authors. Licensee MDPI, Basel, Switzerland.
Description
Keywords
compressive strength, copper slag, quartz, sand, split tensile strength
Citation
Engineering Proceedings, 2023, 59, 1, pp. N-
