Fortnightly Standardized Precipitation Index trend analysis for drought characterization in India

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Climate change is a major concern, as it profoundly affects many facets of our lives. It has brought about several issues, including declining water supply, reduced agricultural yields, increased drought occurrences, and increased heat waves. Amidst these challenges, the influence of short-term drought events on plant growth and irrigation schedule emerges as a critical concern. However, despite these evident consequences, a nuanced understanding of the intricate relationship between the severity and duration of short-period drought/deficit events still needs to be explored. This paper analyses fortnightly water deficit periods over different regions of India, which would be more relevant to re-scheduling the irrigation events than monthly or longer duration in preventing crops from reaching the permanent wilting point. Hence, this work considers analyzing 15-day Standardized Precipitation Index (SPI) trends and drought characteristics using conventional methods and Innovative Trend Analysis (ITA) techniques. The analysis uses gridded rainfall data from the India Meteorological Department (IMD), which has a spatial resolution of 0.250-E and 0.250-N. The data spans the period from 1970 to 2021. The ITA and Mann Kendall (MK) displayed nearly identical areas of increasing and decreasing trends, but ITA effectively identified significant trends. While MK and Modified Mann Kendall (MMK) could only indicate significant trends for 12.94%, 9.57%, and 9.9% of grid points for SPI, drought severity, and duration, respectively, ITA was able to identify significant trends at 44.31%, 10.9%, and 10.1% on an annual scale. The ITA method effectively identified the significant trends and magnitudes of fortnightly SPI and drought characteristics. The Tropical monsoon (Am), Tropical savannah (Aw), Arid desert hot (BWh), Arid steppe hot (BSh), and Temperate dry winter warm summer (Cwb) climatic zones have shown a significant increase in annual drought severity. Similarly, a significant increase in monsoon drought severity is observed across several states, including Gujarat and Mizoram, impacting diverse geographic extents. The present study can help policymakers and water resource managers decide on water allocation, irrigation, and crop management practices. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024.

Description

Keywords

climate change, drought, irrigation, precipitation (climatology), spatial resolution, trend analysis, water budget, water supply, Gujarat, India, Mizoram

Citation

Theoretical and Applied Climatology, 2024, 155, 6, pp. 4891-4908

Collections

Endorsement

Review

Supplemented By

Referenced By