UCDNet: A Deep Learning Model for Urban Change Detection From Bi-Temporal Multispectral Sentinel-2 Satellite Images

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Abstract

Change detection (CD) from satellite images has become an inevitable process in earth observation. Methods for detecting changes in multi-temporal satellite images are very useful tools when characterization and monitoring of urban growth patterns is concerned. Increasing worldwide availability of multispectral images with a high revisit frequency opened up more possibilities in the study of urban CD. Even though there exists several deep learning methods for CD, most of these available methods fail to predict the edges and preserve the shape of the changed area from multispectral images. This article introduces a deep learning model called urban CD network (UCDNet) for urban CD from bi-temporal multispectral Sentinel-2 satellite images. The model is based on an encoder-decoder architecture which uses modified residual connections and the new spatial pyramid pooling (NSPP) block, giving better predictions while preserving the shape of changed areas. The modified residual connections help locate the changes correctly, and the NSPP block can extract multiscale features and will give awareness about global context. UCDNet uses a proposed loss function which is a combination of weighted class categorical cross-entropy (WCCE) and modified Kappa loss. The Onera Satellite Change Detection (OSCD) dataset is used to train, evaluate, and compare the proposed model with the benchmark models. UCDNet gives better results from the reference models used here for comparison. It gives an accuracy of 99.3%, an $F1$ score ( $F1$ ) of 89.21%, a Kappa coefficient (Ka) of 88.85%, and a Jaccard index (JI) of 80.53% on the OSCD dataset. © 1980-2012 IEEE.

Description

Keywords

Deep learning, Media streaming, Remote sensing, Satellites, Urban growth, Change detection, Features extraction, Multispectral satellite image, Remote-sensing, Shape, Spatial pyramid pooling, Spatial pyramids, Streaming medium, Feature extraction, multispectral image, Sentinel

Citation

IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, , pp. -

Collections

Endorsement

Review

Supplemented By

Referenced By