Gender Identification from Children's Speech

No Thumbnail Available

Date

2018

Authors

Bhaskar, Ramteke, P.
Dixit, A.A.
Supanekar, S.
Dharwadkar, N.V.
Koolagudi, S.G.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Children's speech can be characterized by higher pitch and format frequencies compared to the adult speech. Gender identification task from children's speech is difficult as there is no significant difference in the acoustic properties of male and female child. Here, an attempt has been made to explore the features efficient in discriminating the gender from children's speech. Different combinations of spectral features such as Mel-frequency cepstral coefficients (MFCCs), ?MFCCs and ??MFCCs, Formants, Linear predictive cepstral coefficients (LPCCs); Shimmer and Jitter; Prosodic features like pitch and its statistical variations along with ?pitch related features are explored. Features are evaluated using non linear classifiers namely Artificial Neural Network (ANNs), Deep Neural Network (DNNs) and Random Forest (RF). From the results it is observed that the RF achieves an highest accuracy of 84.79% amongst the other classifiers. � 2018 IEEE.

Description

Keywords

Citation

2018 11th International Conference on Contemporary Computing, IC3 2018, 2018, Vol., , pp.-

Endorsement

Review

Supplemented By

Referenced By