Improved Fracture Toughness and Crack Arrest Ability of Graphene–Alumina Nanocomposite

No Thumbnail Available

Date

2021

Authors

Akhil Raj V.R.
Hadagalli K.
Jana P.
Mandal S.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this work, high fracture toughness graphene–alumina composite was developed through a novel chemical method using boehmite and graphene, which is followed by extrusion and consolidation. The mixed precursors were consolidated by sintering at 1550 °C in a nitrogen atmosphere. The plate-like structures of boehmite form α-alumina; meanwhile, graphene particles at the grain boundaries hinder the growth of alumina grains. The graphene reinforcement was bonded to α-alumina matrix by van der Waals forces. The XRD pattern reveals the presence of graphene with a plane (002) along with α-alumina. Properties such as fracture toughness (5.6 ± 0.01 MPa m0.5), Vickers hardness (1872 ± 25 kgf/mm2) and true density (3.8 g/cm3) were achieved in 0.5 wt.% graphene–alumina composite when compared to α-alumina with fracture toughness (5.3 ± 0.1 MPa m0.5), Vickers hardness (1984 ± 28 kgf/mm2) and true density (3.91 g/cm3). The bridging and deviation of cracks in 0.5 wt.% graphene–alumina composite are attributed to the anchoring and dissipation of energy during crack growth, which enhances the fracture toughness, whereas α-alumina exhibits failure caused by linear crack propagation. Meanwhile, the slight decrease in Vickers hardness and true density of 0.5 wt.% graphene–alumina composite is due to the tribological and low-density properties of graphene. The obtained properties of composite could be suitable in high-temperature, wear-resistant applications such as crucibles, bearings, etc. © 2021, ASM International.

Description

Keywords

Citation

Journal of Materials Engineering and Performance Vol. 30 , 2 , p. 1234 - 1244

Endorsement

Review

Supplemented By

Referenced By