YARS-IDS: A Novel IDS for Multi-Class Classification
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Abstract
An Intrusion Detection System (IDS) is a defence system that provides safety and security against different threats and attacks, acting as a wall of defence against attackers. As internet usage increases, IDSs are becoming an essential part of day-to-day life. Various Machine Learning (ML) and Deep Learning (DL) based IDS are available, and the domain of IDS is still evolving and growing. Here this paper proposes two DL-based IDSs, first is a combination of LuNet and Bidirectional LSTM (Bi-LSTM) and other is a combination of Temporal Convolutional Network (TCN), CNN and Bi-LSTM. Such IDS must be fed with an efficient number of samples to keep them updated and accurate. The first model has been trained and tested against two benchmark datasets, NSL-KDD and UNSW-NB15. The second model has been trained and tested against the NSL-KDD dataset. To overcome the insufficient number of samples, the models have used a technique called Synthetic Minority Oversampling Technique (SMOTE). These models provided better experimental outcomes than traditional ML-based approaches and many DL approaches. They have better results in classification accuracy and, detection rate. The classification accuracy of the first model for UNSW-NB15 and NSL-KDD is 82.19% and 98.87% respectively. The classification accuracy of the second model for NSL-KDD is 98.8%. © 2023 IEEE.
Description
Keywords
Bi-LSTM, CNN, DL, IDS, ML, SMOTE, TCN
Citation
2023 IEEE 8th International Conference for Convergence in Technology, I2CT 2023, 2023, Vol., , p. -
