COVIDDX: AI-based clinical decision support system for learning COVID-19 disease representations from multimodal patient data

No Thumbnail Available

Date

2021

Authors

Mayya V.
Karthik K.
Kamath S.S.
Karadka K.
Jeganathan J.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The COVID-19 pandemic has affected the world on a global scale, infecting nearly 68 million people across the world, with over 1.5 million fatalities as of December 2020. A cost-effective early-screening strategy is crucial to prevent new outbreaks and to curtail the rapid spread. Chest X-ray images have been widely used to diagnose various lung conditions such as pneumonia, emphysema, broken ribs and cancer. In this work, we explore the utility of chest X-ray images and available expert-written diagnosis reports, for training neural network models to learn disease representations for diagnosis of COVID-19. A manually curated dataset consisting of 450 chest X-rays of COVID-19 patients and 2,000 non-COVID cases, along with their diagnosis reports were collected from reputed online sources. Convolutional neural network models were trained on this multimodal dataset, for prediction of COVID-19 induced pneumonia. A comprehensive clinical decision support system powered by ensemble deep learning models (CADNN) is designed and deployed on the web. The system also provides a relevance feedback mechanism through which it learns multimodal COVID-19 representations for supporting clinical decisions. Copyright © 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Description

Keywords

Citation

HEALTHINF 2021 - 14th International Conference on Health Informatics; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021 , Vol. , , p. 659 - 666

Endorsement

Review

Supplemented By

Referenced By