Computer-based identification of cataract and cataract surgery efficacy using optical images

dc.contributor.authorNayak, J.
dc.contributor.authorBhat, P.S.
dc.contributor.authorAcharya, U.R.
dc.contributor.authorFaust, O.
dc.contributor.authorMin, L.C.
dc.date.accessioned2020-03-31T08:18:59Z
dc.date.available2020-03-31T08:18:59Z
dc.date.issued2009
dc.description.abstractThe eyes are complex sensory organs, they are designed to capture images under varying light conditions. Eye disorders, such as cataract, among the elderly are a major health problem. Cataract is a painless clouding of the eye lens which develops over a long period of time. During this time, the eyesight gradually worsens. It can eventually lead to blindness and, is common in older people. In fact, about a third of people over 65 have cataracts in one or both eyes. In this paper, we made use of two types of classifiers for identification of normal, cataract (early and developed stage), and post-cataract eyes using features extracted from optical images. These classifiers are artificial neural network and support vector machine. A database of 174 subjects, using the cross-validation strategy, is used to test the effectiveness of both classifiers. We demonstrate a sensitivity of more than 90% for both of these classifiers. Furthermore, they have a specificity of 100% and, as such, the results obtained are very promising. The proposed feature extraction and classification systems are ready clinically to run on a large amount of data sets. 2009 World Scientific Publishing Company.en_US
dc.identifier.citationJournal of Mechanics in Medicine and Biology, 2009, Vol.9, 4, pp.589-607en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/10350
dc.titleComputer-based identification of cataract and cataract surgery efficacy using optical imagesen_US
dc.typeArticleen_US

Files