Utilizing Deep Learning Models and Transfer Learning for COVID-19 Detection from X-Ray Images
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50’s abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model’s explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model’s ability to generalize. The proposed model is intended to be deployed for free use. © 2023, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
Description
Keywords
Chest X-ray, Classification, Coronavirus (COVID-19), Deep learning, Grad-CAM, Heatmap, LIME
Citation
SN Computer Science, 2023, 4, 4, pp. -
