Performance evaluation of novel tapered shell and tube cascaded latent heat thermal energy storage

dc.contributor.authorB.V., B.V.
dc.contributor.authorNidhul, K.
dc.contributor.authorGumtapure, V.
dc.date.accessioned2026-02-05T09:27:31Z
dc.date.issued2021
dc.description.abstractGeometric design of the storage system plays a vital role in the enhancement of heat transfer rate and thereby in the advancement of latent heat thermal energy storage (LHTES) technology. The present study numerically compares the heat transfer performance of tapered type shell and tube cascaded latent heat storage (CLHS) model with that of the conventional cylindrical CLHS model with special emphasis on melting rate at the slowest melting portions (bottom) of the shell and tube unit. Thermal properties like transition temperature, latent, and specific heat of the three organic PCMs OM 42, OM 46, and OM 48 have been obtained using differential scanning calorimetry (DSC), and the same is employed in the 2-D numerical simulation carried out using enthalpy-porosity method. Tapered CLHS unit exhibited superior performance owing to stronger natural convective currents demonstrated via streamlines, velocity, temperature and mass fraction contours. In tapered unit, 17.6% higher mean power is obtained for same volume of PCMs in cylindrical unit. In contrast, the mean power of the discharging process for a tapered type is 2.4% lesser than cylindrical type CLHS. The outcomes highlight that the tapered type CLHS model utilizes convective heat transfer, effectively enhancing the melting rate of PCM without any additional structural configurations such as fins. Hence is also economically justifiable for higher energy storage for the same volume compared to conventional cylindrical CLHS units. © 2020 International Solar Energy Society
dc.identifier.citationSolar Energy, 2021, 214, , pp. 377-392
dc.identifier.issn0038092X
dc.identifier.urihttps://doi.org/10.1016/j.solener.2020.11.069
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/23394
dc.publisherElsevier Ltd
dc.subjectDifferential scanning calorimetry
dc.subjectHeat convection
dc.subjectHeat storage
dc.subjectLatent heat
dc.subjectMetal melting
dc.subjectNumerical methods
dc.subjectSpecific heat
dc.subjectThermal energy
dc.subject2-D numerical simulation
dc.subjectConvective heat transfer
dc.subjectCylindrical types
dc.subjectDischarging process
dc.subjectEnhancement of heat transfer
dc.subjectEnthalpy-porosity method
dc.subjectLatent heat thermal energy storage
dc.subjectStructural configurations
dc.subjectHeat transfer performance
dc.subjectdetection method
dc.subjectenergy storage
dc.subjectheat budget
dc.subjectheat transfer
dc.subjectperformance assessment
dc.subjectshell
dc.subjectsimulation
dc.subjectthermal power
dc.titlePerformance evaluation of novel tapered shell and tube cascaded latent heat thermal energy storage

Files

Collections