Extending the applicability of Newton’s and secant methods under regular smoothness

dc.contributor.authorArgyros I.K.
dc.contributor.authorGeorge S.
dc.contributor.authorErappa S.M.
dc.date.accessioned2021-05-05T10:27:07Z
dc.date.available2021-05-05T10:27:07Z
dc.date.issued2020
dc.description.abstractThe concept of regular smoothness has been shown to be an appropriate and powerfull tool for the convergence of iterative procedures converging to a locally unique solution of an operator equation in a Banach space setting. Motivated by earlier works, and optimization considerations, we present a tighter semi-local convergence analysis using our new idea of restricted convergence domains. Numerical examples complete this study. © 2020 Boletim da Sociedade Paranaense de Matematica. All rights reserved.en_US
dc.identifier.citationBoletim da Sociedade Paranaense de Matematica Vol. 39 , 6 , p. 195 - 210en_US
dc.identifier.urihttps://doi.org/10.5269/BSPM.42132
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/15456
dc.titleExtending the applicability of Newton’s and secant methods under regular smoothnessen_US
dc.typeArticleen_US

Files