Machine Learning Techniques for the Investigation of Phishing Websites
No Thumbnail Available
Date
2021
Authors
Ajaykumar K. B
Rudra B.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Phishing is ordinarily acquainted with increase a position in an organization or administrative systems as a zone of a greater assault, similar to an advanced tireless risk (APT) occasion. An association surrendering to such a partner degree assault generally continues serious money related misfortunes furthermore to declining piece of the pie, notoriety, and customer trust. Depending on scope, a phishing attempt may step up into a security episode from that a business can have an inconvenient time recuperating. So as to locate this kind of assault, we endeavored to make a machine learning model that advises the client that it is suspicious or genuine. Phishing sites contain various indications among their substance also, web program-based information. The motivation behind this investigation is to perform different AI-based order for 30 features incorporating Phishing Websites Data in the UC Irvine AI Repository database. For results appraisal, random forest (RF) was contrasted and elective machine learning ways like linear regression (LR), support vector machine (SVM), Naive Bayes (NB), gradient boosting classifier (GBM), artificial neural network (ANN) and recognized to have the most noteworthy exactness of 97.39. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Description
Keywords
Citation
Advances in Intelligent Systems and Computing , Vol. 1176 , , p. 55 - 64