Application ANN Tool for Validation of LHD Machine Performance Characteristics

No Thumbnail Available

Date

2020

Authors

Jakkula, B.
Mandela, G.R.
Chivukula, S.M.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Survival of industries has become more critical in the present global competitive business environment unless they produce their projected production levels. The accomplishment of this can be possible only by maintaining the men and machinery in an efficient and effective manner. Hence, it is more essential to estimate the performance of utilized equipment for reaching/achieving future goals. The present study focuses on the estimation of underground mining machinery such as the load haul dump machine performance characteristics using Isograph Reliability Workbench 13.0 software. The allocation of best-fit/goodness-of-fit distribution was made by utilizing the Kolmogorov Smirnov test (K S) test. The parameters were recorded based on the best-fitted results using the maximum likelihood estimate test. Further, a feed-forward-back-propagation artificial neural network (ANN) tool has been used to develop the models of reliability, availability and preventive maintenance time intervals. The number of neurons was selected with the Levenberg Marquardt learning algorithm in the hidden layer as the optimal value. The output responses were predicted corresponding to the optimal values. Further, an attempt has been made to validate the computed results with ANN predicted responses. The recommendations are suggested to the industry based on the results for the improvement of system performance. 2020, The Institution of Engineers (India).

Description

Keywords

Citation

Journal of The Institution of Engineers (India): Series D, 2020, Vol., , pp.-

Endorsement

Review

Supplemented By

Referenced By