Electrofabrication of multilayer Fe-Ni alloy coatings for better corrosion protection
No Thumbnail Available
Date
2014
Authors
Ullal, Y.
Hegde, A.C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Electrofabrication of multilayer Fe-Ni alloy coatings were accomplished successfully on mild steel and their corrosion behaviors were studied. Multilayer comprised of alternatively formed 'nano-size' layers of Fe-Ni alloy of different composition have been produced from a single bath having Fe 2+and Ni2+ ions using modulated (i.e. periodic pulse control) current density (cd). The deposition conditions were optimized for both composition and thickness of individual layers for best performance of the coatings against corrosion. The deposits were analyzed using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Hardness Tester, electrochemical AC and DC methods respectively. The multi layered deposits showed better corrosion resistances compared to the monolayer Fe-Ni (CR = 3.77 mm year-1) coating deposited using DC from the same bath; the maximum corrosion resistance being shown by the coating having 300 layers, deposited at cyclic cathodic current densities of 2.0 and 4.0 A dm-2 (CR = 0.03 mm year-1). Drastic improvement in the corrosion performance of multilayer coatings were explained in the light of changed kinetics of mass transfer at cathode and increased surface area due to modulation and layering. 2014 Springer-Verlag Berlin Heidelberg.
Description
Keywords
Citation
Applied Physics A: Materials Science and Processing, 2014, Vol.116, 4, pp.1587-1594