Numerical Analysis of Lid-Driven Cavity Flow Induced by Triangular Obstacles †

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Multidisciplinary Digital Publishing Institute (MDPI)

Abstract

This research work presents a study on the flow behaviour in the lid-driven cavity (LDC) flows with triangular blocks using computational fluid dynamics techniques. The LDC flow is a widely studied problem that remains a standard for viscous incompressible fluid flows, with a range of parameters, including the Reynolds number, being explored. The finite volume method was used to discretize the domain, and simulations were computed using ANSYS FLUENT 2021 R1. The fluid flow started when the top wall is moved in the +X direction, whereas the other three walls are kept stationary. A grid independence test was performed to determine the optimum grid size and to obtain a grid-independent solution. Quantitative elements of the 2D flows in lid-driven cavities were explored for Reynolds numbers ranging from 1000 to 8000, and the results were validated against the existing literature. The consequence of different values of the Reynolds number (Re) were analyzed and examined through vorticity, streamline patterns, and kinetic energy contours. The velocity profile at the centerline was enhanced, and the vortex number and size increased with an increase in Re. The behaviour of the isolines of the vortices and the kinetic energy contours was also analyzed. The kinetic energy contours show that the high velocity of the fluid particles close to the upper wall is a significant factor affecting the maximum kinetic energy values. As the Reynolds number increased, the kinetic energy gradually increased at the boundary. This suggests that the Re considerably affects the energy values. Overall, this study provides valuable insights into the flow behaviour of lid-driven cavities and the effects of obstacles on flow patterns, contributing to the existing literature and being useful for researchers and engineers working in the field of fluid dynamics. © 2023 by the authors.

Description

Keywords

different grid sizes, lid–driven cavity, numerical analysis, Reynolds number, triangle obstacle

Citation

Engineering Proceedings, 2023, 59, 1, pp. -

Collections

Endorsement

Review

Supplemented By

Referenced By