Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

No Thumbnail Available

Date

2014

Authors

Mukherjee, S.
Ram Mohana Reddy, Guddeti

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Abstract: We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 2,304). 2014, 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg.

Description

Keywords

Citation

3D Research, 2014, Vol.5, 3, pp.1-21

Endorsement

Review

Supplemented By

Referenced By