Improved local convergence analysis for a three point method of convergence order 1.839

dc.contributor.authorArgyros, I.K.
dc.contributor.authorCho, Y.J.
dc.contributor.authorGeorge, S.
dc.date.accessioned2020-03-31T08:35:19Z
dc.date.available2020-03-31T08:35:19Z
dc.date.issued2019
dc.description.abstractIn this paper, we present a local convergence analysis of a three point method with convergence order 1.839 for approximating a locally unique solution of a nonlinear operator equation in setting of Banach spaces. Using weaker hypotheses than in earlier studies, we obtain: larger radius of convergence and more precise error estimates on the distances involved. Finally, numerical examples are used to show the advantages of the main results over earlier results. 2019 Korean Mathematical Society.en_US
dc.identifier.citationBulletin of the Korean Mathematical Society, 2019, Vol.56, 3, pp.621-629en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/11556
dc.titleImproved local convergence analysis for a three point method of convergence order 1.839en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
13.IMPROVED LOCAL CONVERGENCE.pdf
Size:
265.65 KB
Format:
Adobe Portable Document Format