Gaussian approximation using integer sequences
No Thumbnail Available
Date
2014
Authors
Rajan, A.
Rao, A.
Vittal, Rao, R.
Jamadagni, H.S.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The need for generating samples that approximate statistical distributions within reasonable error limits and with less computational cost, necessitates the search for alternatives. In this work, we focus on the approximation of Gaussian distribution using the convolution of integer sequences. The results show that we can approximate Gaussian profile within 1% error. Though Bessel function based discrete kernels have been proposed earlier, they involve computations on real numbers and hence increasing the computational complexity. However, the integer sequence based Gaussian approximation, discussed in this paper, offer a low cost alternative to the one using Bessel functions. � Springer International Publishing Switzerland 2014.
Description
Keywords
Citation
Advances in Intelligent Systems and Computing, 2014, Vol.264, , pp.213-224