Experimental investigation and optimization of performance, emission, and vibro-acoustic parameters of SI engine fueled with n-propanol and gasoline blends using ANN-GA coupled with NSGA3-modified TOPSIS hybrid approach
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Abstract
In the present study, performance, emission, and vibro-acoustic studies were conducted on a spark ignition (SI) engine fueled with gasoline and an n-propanol blend at variable compression ratio (CR), speed, and propanol blend fraction (PBF). Experimental data were used to model an artificial neural network (ANN) trained with a genetic algorithm (GA). ANN predictive responses were employed to establish regression relationships between brake power (BP), brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), oxides of nitrogen (NO<inf>x</inf>), carbon monoxide (CO), hydrocarbon (HC), resultant vibration acceleration (RVA), and sound pressure level (SPL) with operating parameters using response surface methodology (RSM). These models served as objective functions in the non-dominated sorting genetic algorithm-3 (NSGA3), a multi-objective optimization (MOO) technique, to optimize responses and obtain non-dominated solutions. These solutions were filtered using a modified technique for order preference by similarity to the ideal solution (TOPSIS) to obtain a compromised optimal solution. ANN-GA model outcomes showed high accuracy, with coefficient of determination (R2) and root mean square error (RMSE) values ranging from 0.979 to 0.993 and 0.0381 to 0.0643, respectively. NSGA3 coupled with modified TOPSIS identified optimal operating conditions at 1271.77 RPM, a CR of 11.96, and a PBF of 33.26 %. © 2024 Elsevier Ltd
Description
Keywords
Acceleration, Brakes, Carbon monoxide, Engines, Gasoline, Mean square error, Multiobjective optimization, Neural networks, Surface properties, Thermal efficiency, Algorithm-3, Ideal solutions, Modified technique for order preference by similarity to the ideal solution, Multi-objectives optimization, N-propanol, Non-dominated sorting genetic algorithm-3, Non-dominated sorting genetic algorithms, Performance, Response-surface methodology, Spark-ignition engine, Genetic algorithms, artificial neural network, diesel engine, experimental study, fuel consumption, genetic algorithm, optimization, parameter estimation, response surface methodology
Citation
Energy, 2024, 306, , pp. -
