ZnWO4/SnO2@r-GO nanocomposite as an anode material for high capacity lithium ion battery

No Thumbnail Available

Date

2020

Authors

Brijesh K.
Vinayraj S.
Dhanush P.C.
Bindu K.
Nagaraja H.S.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Lithium ion battery (LIB) is widely used energy storage device. Herein, we report the preparation of ZnWO4/SnO2 nanocomposite and ZnWO4/SnO2@r-GO nanocomposite via solvothermal method. The structural, elemental and morphological properties of the prepared samples are characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), high-resolution transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) measurements, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. The prepared samples are tested as an anode for LIB. The ZnWO4/SnO2 (5%) nanocomposite delivers initial discharge capacity of 882 mAh g−1 at a current density of 100 mA g−1, while, the specific capacity increases with the increase of SnO2 upto 10% tested in present case. Further, ZnWO4/SnO2@r-GO nanocomposite exhibits a discharge capacity of 1486 mAh g−1 which is higher than that of ZnWO4/SnO2 nanocomposite. In addition, after 500 cycles ZnWO4/SnO2@r-GO nanocomposite exhibits 89.8% cycle life and 98% of discharge capacity retention. These results indicate that, ZnWO4/SnO2@r-GO nanocomposite is a promising anode material for LIB. © 2020 Elsevier Ltd

Description

Keywords

Citation

Electrochimica Acta Vol. 354 , , p. -

Endorsement

Review

Supplemented By

Referenced By