Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

dc.contributor.authorMandal, S.
dc.contributor.authorRao, S.
dc.contributor.authorHarish, N.
dc.contributor.authorLokesha
dc.date.accessioned2020-03-31T08:22:49Z
dc.date.available2020-03-31T08:22:49Z
dc.date.issued2012
dc.description.abstractThe damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater. SNAK, 2012.en_US
dc.identifier.citationInternational Journal of Naval Architecture and Ocean Engineering, 2012, Vol.4, 2, pp.112-122en_US
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/10612
dc.titleDamage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS modelsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10612.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format