Fabrication of praseodymium-doped ceria (PDC) films by slurry spin-coating technique and its structural, morphological and optical properties
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B.V.
Abstract
The current study is on the fabrication of PDC films prepared by slurry spin-coating technique for photoluminescence activity. At lower spin rates (1000 rpm), thicker and uniform PDC films were obtained. The structural evolution of the sintered PDC films on a dense alumina substrate was studied using Grazing Incidence X-ray diffraction (GIXRD) and Raman Spectroscopy. Crystallite size, microstrain, and dislocation density values remain almost the same with the increase in the coating cycles. The A<inf>568</inf>/A<inf>463</inf> ratio for 3, 5, and 10 coating cycles are 0.52, 0.49, and 0.61, respectively. Surface roughness studies of PDC films using a 3D Noncontact Profilometer. The mean surface roughness values are 12.55, 13.74, and 22.25 μm for the 3rd,5th, and 10th coating cycles, respectively. Microstructure observation by Field Emission Scanning Electron Microscope (FE-SEM). The average thickness of the films for the 3rd, 5th, and 10th coating cycles are 50.93, 41.64, and 109.95 μm, respectively. The PDC films obtained on a dense alumina substrate were porous. FE-SEM micrographs showed a particle aggregation of several irregular and smaller grains, indicating the sintering activity of PDC films. Optical properties were studied using ultraviolet-visible (UV–Vis) absorption spectra and photoluminescence spectra (PLS). The band gap values slightly increased with the increase in the coating cycles. A decrease in PL intensity with an increase in the coating cycle is related to higher oxygen vacancy concentration. PDC films fabricated by the slurry spin-coating technique can be successfully used for optoelectronic applications. © 2023
Description
Keywords
Photoluminescence activity, Porous films, Praseodymium-doped ceria (PDC), Slurry spin-coating technique
Citation
Applied Surface Science Advances, 2023, 16, , pp. -
