Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales

dc.contributor.authorMekoth, C.
dc.contributor.authorGeorge, S.
dc.contributor.authorPadikkal, P.
dc.date.accessioned2026-02-04T12:27:06Z
dc.date.issued2023
dc.description.abstractOne of the most crucial parts of applying a regularization method to solve an ill-posed problem is choosing a regularization parameter to obtain an optimal order error estimate. In this paper, we consider the finite dimensional realization of the parameter choice strategy proposed in [C. Mekoth, S. George and P. Jidesh, Appl. Math. Comput. 392, 125701, 2021] for Fractional Tikhonov regularization method for linear ill-posed operator equations in the setting of Hilbert scales. © 2023, Hacettepe University. All rights reserved.
dc.identifier.citationHacettepe Journal of Mathematics and Statistics, 2023, 52, 3, pp. 729-752
dc.identifier.issn13035010
dc.identifier.urihttps://doi.org/10.15672/hujms.1092739
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/22135
dc.publisherHacettepe University
dc.subjectfinite dimensional realization
dc.subjectfractional Tikhonov regularization
dc.subjectHilbert scales
dc.subjectill-posed problem
dc.subjectparameter choice strategy
dc.titleFinite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales

Files

Collections