Early age, hydration, mechanical and microstructure properties of nano-silica blended cementitious composites

No Thumbnail Available

Date

2020

Authors

Snehal, K.
Das, B.B.
Akanksha, M.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This study was carried out to understand the influence of nano-silica on hydration properties of binary, ternary and quaternary blended cement paste and mortar containing micro to nano sized admixtures including fly ash (FA), ultrafine fly ash (UFFA) and nano-silica in colloidal form (CNS). Characterization methods such as thermogravimetric analysis (TGA), X-ray diffraction studies (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) was employed to quantify the hydration products. Further, early age and mechanical properties were also investigated for binary, ternary and quaternary cementitious system blended with nano-silica. The optimized proportions of blended paste and mortar are designed through modified Andreasen and Andersen particle packing model. The experimental test results revealed that the optimum dosage of CNS in binary blended cement composites is 3%. The presence of nano-silica in cementitious system amplified the hydration and pozzolanic activity, thereby promoting densified microstructure at nano scale. The flow test indicated the intensified demand for water absorption and reduced workability with the rise in level of incorporation of CNS particles in cement paste. Quaternary blended mix performed superior hydration along with strength properties amongst all the blended samples. 2019 Elsevier Ltd

Description

Keywords

Citation

Construction and Building Materials, 2020, Vol.233, , pp.-

Endorsement

Review

Supplemented By

Referenced By