Assessment of heat transfer during solidification of Al-22% Si alloy by inverse analysis and surface roughness based predictive model
Files
Date
2012
Authors
Jayananda
Prabhu, K.N.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Heat flux transients were estimated during unidirectional downward solidification of Al-22% Si alloy against copper, die steel and stainless steel chills. The chill instrumented with thermocouples was brought into contact with the liquid metal so as to avoid the effect of convection associated with the pouring of liquid metal. Heat flux transients were estimated by solving the inverse heat conduction problem. Higher thermal conductivity of chill material resulted in increased peak heat flux at the metal/ chill interface. Peak heat flux decreased when 100 lm thick alumina coating was applied on the chill surface. The lower thermal conductivity of alumina based coating and the presence of additional thermal resistance decreases the interfacial heat transfer. For uncoated chills, the ratio of the surface roughness (R a) of the casting to chill decreased from 6.5 to 0.5 with decrease in the thermal conductivity of the chill material. However when coating was applied on the chill, the surface roughness ratio was nearly constant at about 0.2 for all chill materials. The measured roughness data was used in a sum surface roughness model to estimate the heat transfer coefficient. The results of the model are in reasonable agreement with experimentally determined heat-transfer coefficients for coated chills.
Description
Keywords
Citation
Transactions of the Indian Institute of Metals, 2012, Vol.65, 6, pp.539-543