Frames for Metric Spaces

dc.contributor.authorMahesh Krishna, K.M.
dc.contributor.authorJohnson, P.S.
dc.date.accessioned2026-02-04T12:28:17Z
dc.date.issued2022
dc.description.abstractWe make a systematic study of frames for metric spaces. We prove that every separable metric space admits a metric M<inf>d</inf>-frame. Through Lipschitz-free Banach spaces we show that there is a correspondence between frames for metric spaces and frames for subsets of Banach spaces. We derive some characterizations of metric frames. We also derive stability results for metric frames. © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
dc.identifier.citationResults in Mathematics, 2022, 77, 1, pp. -
dc.identifier.issn14226383
dc.identifier.urihttps://doi.org/10.1007/s00025-021-01583-3
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/22685
dc.publisherBirkhauser
dc.subjectFrame
dc.subjectLipschitz function
dc.subjectmetric space
dc.titleFrames for Metric Spaces

Files

Collections