Frames for Metric Spaces
| dc.contributor.author | Mahesh Krishna, K.M. | |
| dc.contributor.author | Johnson, P.S. | |
| dc.date.accessioned | 2026-02-04T12:28:17Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | We make a systematic study of frames for metric spaces. We prove that every separable metric space admits a metric M<inf>d</inf>-frame. Through Lipschitz-free Banach spaces we show that there is a correspondence between frames for metric spaces and frames for subsets of Banach spaces. We derive some characterizations of metric frames. We also derive stability results for metric frames. © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG. | |
| dc.identifier.citation | Results in Mathematics, 2022, 77, 1, pp. - | |
| dc.identifier.issn | 14226383 | |
| dc.identifier.uri | https://doi.org/10.1007/s00025-021-01583-3 | |
| dc.identifier.uri | https://idr.nitk.ac.in/handle/123456789/22685 | |
| dc.publisher | Birkhauser | |
| dc.subject | Frame | |
| dc.subject | Lipschitz function | |
| dc.subject | metric space | |
| dc.title | Frames for Metric Spaces |
