A Partial Solution to Linear Congruence Conjecture

dc.contributor.authorHegde, S.M.
dc.contributor.authorMurthy, T.S.
dc.date.accessioned2026-02-05T09:32:49Z
dc.date.issued2016
dc.description.abstractAdams and Ponomarenko (Involv J Math 3(3):341–344, 2010) conjectured that when n is composite, k<n and gcd(a1,a2,..,ak)?Zn×, then there exist distinct x<inf>i</inf>? Z<inf>n</inf> satisfying (Formula Presented). In this paper, distinct solution has been constructed to the linear congruence when ?i=1kai=n-1, using super edge-magic labeling of trees. © 2016, The National Academy of Sciences, India.
dc.identifier.citationNational Academy Science Letters, 2016, 39, 6, pp. 451-453
dc.identifier.issn0250541X
dc.identifier.urihttps://doi.org/10.1007/s40009-016-0504-7
dc.identifier.urihttps://idr.nitk.ac.in/handle/123456789/25853
dc.publisherSpringer India sanjiv.goswami@springer.co.in
dc.subjectEdge-magic labeling
dc.subjectLinear congruence
dc.subjectSuper edge-magic labeling
dc.titleA Partial Solution to Linear Congruence Conjecture

Files

Collections