Preparation and Characterization of Zinc Tungstate and Composite as Anode Material for Lithium-Ion Battery

Thumbnail Image

Date

2021

Authors

K, Brijesh.

Journal Title

Journal ISSN

Volume Title

Publisher

National Institute of Technology Karnataka, Surathkal

Abstract

The thesis entitled “preparation and characterization of zinc tungstate and composite as anode material for lithium-ion battery” cover the preparation, characterization and electrochemical analysis as anode material for Lithium-ion battery (LIB) of zinc tungstate and their composites (ZnWO4/SnO2, ZnWO4/GeO2 and ZnWO4/SiO2) via solvothermal and microwave method. The structural, elemental and morphological properties of the prepared samples are characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), high-resolution transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) measurements, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. Prepared ZnWO4 and ZnWO4@r-GO nanocomposite delivered initial discharge capacity of 746 and 1158 mAh g-1 respectively at current density of 100 mA g-1 and potential window 0.02 - 3 V versus Li/Li+ at room temperature. Further, ZnWO4/SnO2 and ZnWO4/GeO2 are tested as anode material for LIB. Increasing percentage of SnO2 increases the specific capacity of the ZnWO4/SnO2 composite and GO further boosts the specific capacity of the composite. The capacity of the first discharge curve of ZWSN-5, ZWSN-10 and ZWSN-10/GO nanocomposite is noticed as 882, 1316 and 1486 mAh g-1 respectively. While in the case of ZnWO4/GeO2, the initial discharge capacity of ZWGE5, ZWGE10 and ZWGEC nanocomposites were 761, 825, and 930 mAh g−1, respectively. Further, CNT boosts the performance of the ZnWO4/GeO2 composite. ZnWO4/SiO2 is prepared via microwave method and used as an anode material for LIB. The initial charge discharge capacity of the ZWSO5 nanocomposites is 570 and 314 mAh g-1 respectively at 10 mA g-1. The discharge capacity of the ZW, ZWSO1, ZWSO2, ZWSO3 and ZWSO4 are 145, 265, 278, 363 and 453 mAh g−1 respectively. The increasing amount of SiO2 in the ZnWO4/SiO2 composite increases the overall performance of the ZnWO4/SiO2 composite.

Description

Keywords

Department of Physics, Zinc tungstate, hybrid metal oxides, anode material, lithium ion battery, electrochemical studies

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By