Non-orthogonal space frequency block codes from cyclic codes for wireless systems employing MIMO-OFDM with index modulation
Date
2019
Authors
M.A.N.S, R.
Shripathi, Acharya U.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Space frequency codes (SFC) having error correcting structure can be used to enhance the bit error rate (BER) performance of modern wireless systems (5G and beyond) employing multiple-input multiple-output (MIMO) and multi-carrier communication. In this work, the construction of non-orthogonal space frequency block codes (NSFBC) from (n,k) cyclic codes has been proposed. In which, n represents the number of symbols in the codeword and k represents the number of symbols in the information sequence. The performance of proposed codes has been evaluated in MIMO systems employing orthogonal frequency division multiplexing and index modulation (MIMO-OFDM-IM). We initially obtained (n,k) full rank cyclic codes for any 1<k<?[Formula presented]? using Galois field Fourier transform (GFFT) description of (n,k) cyclic codes over F q m . Further, NSFBCs are obtained from full rank codes using Rank preserving maps. In a 2 2 system and a 10-path MIMO channel, the proposed full rank NSFBC with rank-preserving IM mapping (FR-NSFBC-IM), over F 5 2 , provides he similar BER performance when compared to MIMO-OFDM-IM system with Rate-1 Alamouti code and QPSK. Moreover, it provides an improvement in spectral efficiency of about 0.9 b/s/Hz. When compared to the MIMO-OFDM-IM with BPSK, FR-NSFBC-IM codes over F 5 2 provide an asymptotic SNR gain of about 1 dB and also the spectral efficiency has been improved by about 0.6 b/s/Hz. In the 4 4 scenario, full rank NSFBCs over F 5 4 with rank deficient IM mapping (RD-NSFBC-IM) provide an improvement in spectral efficiency of about 1.3 b/s/Hz. However, BER performance is similar to that of MIMO-OFDM-IM with BPSK. 2019
Description
Keywords
Citation
Physical Communication, 2019, Vol.34, , pp.174-187