Evaluation of properties of nonfoaming Warm mix asphalt mixtures at lower working temperatures

No Thumbnail Available

Date

2017

Authors

Shiva, Kumar, G.
Suresha, S.N.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Warm mix asphalt (WMA) is a green technology which has the potential to replace hot mix asphalt (HMA) because it reduces greenhouse gas emissions and energy consumption by lowering the temperature at which asphalt mixtures are produced and placed. During the design process, evaluation of the mix design and mechanical properties of WMA mixtures is necessary. Therefore, the ability to quantify compactability would be very useful. This paper presents details on the evaluation of asphalt mix design, workability, and mechanical properties of asphalt mixtures modified with nonfoaming WMA additives at lower working (mixing and compaction) temperatures. Further, it seeks to provide a wider gap between mixing and compaction temperatures to ensure that WMA mixtures are suitable for longer haul distances. Asphalt mix design properties were evaluated by the Superpave method for various design gyrations (Ndes), and workability properties were evaluated in terms of Superpave gyratory compactor (SGC) densification indices using the Bahia and locking point methods. Mechanical properties such as resistance to moisture-induced damage were evaluated by the tensile strength ratio (TSR) approach, rutting resistance was evaluated by a laboratory wheel tracking test using a wheel rut tester (WRT), and flexural fatigue characteristics were evaluated by four point bending using a repeated load testing (RLT) machine. The effects of nominal maximumaggregate size (NMAS), working temperature, and type of mixture on the properties ofWMAmixtures were investigated. The experimental results were statistically analyzed to identify the major influencing factors and their significance. 2017 American Society of Civil Engineers.

Description

Keywords

Citation

Journal of Materials in Civil Engineering, 2017, Vol.29, 11, pp.-

Endorsement

Review

Supplemented By

Referenced By