Determining elastic properties of CSEB masonry using FEA-based homogenization technique
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Abstract
The world today is embracing a sustainable approach in all sectors. The construction industry is grappling with the problem of minimizing energy consumption and lowering carbon emissions involved in the manufacture of construction materials. Soil blocks are an alternative to fired clay bricks. Soil bricks are inexpensive, recyclable, environmentally friendly, and provide better thermal comfort. However, masonry walls built with soil blocks have several drawbacks. They are bulky, have poor durability properties and their strength capacity reduces significantly when saturated due to rain. The remedy for this problem is a Cement Stabilized Earth Block (CSEB). An engineered mixture of soil-sand-cement-moisture compacted at predefined levels offers superior strength and durability properties. The percentage of cement added is minimal in comparison to the soil-sand mixture content. In this study, a numerical model to predict the elastic properties of masonry comprised of CSEB and soil–cement mortar is developed. Both the constituents, CSEBs, and soil–cement mortar have different elastic properties. The presence of bed joints and perpends lends orthotropic behavior to masonry. The present study considers the Finite element analysis (FEA)-based homogenization technique to predict the elastic properties of CSEB masonry. A small periodic part of masonry called a repetitive unit cell (RUC) is considered, which is representative of the block-mortar arrangement in masonry. The three-dimensional masonry RUC is modelled using FE-based ABAQUS-CAE software. A user-defined Python script is developed to apply PBCs (Periodic boundary conditions) to RUC. The six far-field unit strains are applied to the RUC model in three normal and three shear directions. Finally, volume-averaged stress components are computed to determine the elastic properties. The modulus of elasticity and Poisson's ratio of CSEB masonry along three directions are determined. The proposed approach is governed by mechanics and not by empirical relationships and provides satisfactory results. © 2023
Description
Keywords
ABAQUS, Boundary conditions, Brick, Construction industry, Durability, Elasticity, Energy utilization, Homogenization method, Mortar, Soil cement, Walls (structural partitions), Cement stabilized, Cement stabilized earth block, Earth blocks, Elastic properties, Homogenization, Periodic boundary condition, Periodic boundary conditions, Repetitive unit cell, Repetitive units, Unit cells, Soils
Citation
Materials Today: Proceedings, 2023, , , pp. -
