CloudX-net: A robust encoder-decoder architecture for cloud detection from satellite remote sensing images

No Thumbnail Available

Date

2020

Authors

Kanu S.
Khoja R.
Lal S.
Raghavendra B.S.
CS A.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Cloud Detection is an important pre-processing step for any application involving remote sensing data. This paper presents a deep learning based CloudX-Net architecture, that can detect cloud cover with improved accuracy in comparison to the benchmark from satellite remote sensing images. The proposed CloudX-Net model reduces the number of parameters needed for accurate predictions and thus make deep learning based cloud detection method very efficient. Atrous Spatial Pyramid Pooling (ASPP) and Separable convolution are used to optimize the network. For experimentation, we have used Landsat 8 images and 38-Cloud dataset and trained the architectures using Soft Jaccard loss function. Comparing several quantifying metrics result from various recent deep learning architectures proves the efficiency and effectiveness of the proposed CloudX-Net model for cloud detection from satellite images. The source code and data are available at https://github.com/shyamfec/CloudXNet. © 2020 Elsevier B.V.

Description

Keywords

Citation

Remote Sensing Applications: Society and Environment , Vol. 20 , , p. -

Endorsement

Review

Supplemented By

Referenced By