Tungsten passivation layer (WO3) formation mechanisms during chemical mechanical planarization in the presence of oxidizers
No Thumbnail Available
Date
2021
Authors
Poddar M.K.
Jalalzai P.
Sahir S.
Yerriboina N.P.
Kim T.-G.
Park J.-G.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Effects of single and mixed oxidants of Fe(NO3)3 and H2O2 containing acidic silica slurries were studied to investigate the mechanism of tungsten (W) chemical mechanical planarization (CMP). The W polishing rate obtained from the CMP test depicted high W polishing rate in the presence of mixed oxidants of Fe(NO3)3 and H2O2 as compared to a single oxidant of either H2O2 or Fe(NO3)3. The formation of a passive layer of tungsten oxide (WO3) and W dissolution could be the reason for these results as confirmed by XPS. Further investigation revealed that the generation of much stronger oxidants of hydroxyl radicals ([rad]OH) was solely responsible for WO3 layer formation. Quantitative evaluation of [rad]OH generation was estimated using a UV–visible spectrophotometer and confirmed that in-situ generation of hydroxyl radicals ([rad]OH) could be a main driving force for the high W polishing rate by converting a hard W film into a soft passive film of WO3. WO3 film formation was further confirmed using potentiodynamic polarization studies, which showed a smaller value of corrosion current density (Icorr) in mixed oxidants of Fe(NO3)3 and H2O2 as compared to the large values of Icorr observed for H2O2 alone. This study revealed that a single oxidizer of either Fe(NO3)3 or H2O2 was not capable of achieving a high W removal rate. Rather, only mixed oxidants of Fe(NO3)3 and H2O2 could cause a high W polishing rate due to excessive in-situ generation of [rad]OH radicals during the W CMP process. © 2020
Description
Keywords
Citation
Applied Surface Science Vol. 537 , , p. -