Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods
No Thumbnail Available
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
PWN-Polish Scientific Publishers bbe@ibib.waw.pl
Abstract
An automatic method for the detection of Tuberculosis (TB) bacilli from microscopic sputum smear images is presented in this paper. According to WHO, TB is the ninth leading cause of death all over the world. There are various techniques to diagnose TB, of which conventional microscopic sputum smear examination is considered to be the gold standard. However, the aforementioned method of diagnosis is time intensive and error prone, even in experienced hands. The proposed method performs detection of TB, by image binarization and subsequent classification of detected regions using a convolutional neural network. We have evaluated our algorithm using a dataset of 22 sputum smear microscopic images with different backgrounds (high density and low-density images). Experimental results show that the proposed algorithm achieves 97.13% recall, 78.4% precision and 86.76% F-score for the TB detection. The proposed method automatically detects whether the sputum smear images is infected with TB or not. This method will aid clinicians to predict the disease accurately in a short span of time, thereby helping in improving the clinical outcome. © 2018 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Description
Keywords
algorithm, Article, artificial neural network, automation, bacterium detection, gold standard, machine learning, measurement accuracy, measurement error, measurement precision, Mycobacterium tuberculosis, nonhuman, priority journal, sensitivity and specificity, sputum smear, tuberculosis
Citation
Biocybernetics and Biomedical Engineering, 2018, 38, 3, pp. 691-699
