Elucidating the Role of Copper-Induced Mixed Phases on the Electrochemical Performance of Mn-Based Thin-Film Electrodes
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Abstract
Manganese oxide is a fascinating material for use as a thin-film electrode in supercapacitors. Herein, the consequences of copper incorporation on spray pyrolyzed manganese oxide thin films and their electrochemical performance were investigated. The Cu-incorporated manganese oxide thin films were deposited by spray pyrolysis, and their structural and electrochemical properties were thoroughly evaluated. The formation of the spinel Mn<inf>3</inf>O<inf>4</inf> phase with effective Cu incorporation was confirmed by X-ray diffraction investigation. Through Raman studies, it was noticed that mixed phases of manganese oxide tend to form after Cu incorporation, and this result was also reflected in X-ray photoelectron spectroscopic studies. The surface morphology and roughness were also altered by the addition of copper. However, electrochemical measurements implied a reduction in the specific capacitance upon copper inclusion. The cyclic voltammetry test indicated a specific capacitance of 132 F/g for Mn<inf>3</inf>O<inf>4</inf> electrodes, but a substantial drop for copper-incorporated samples due to the mixed manganese phase. The decremental tendency was further supported by galvanostatic charge-discharge studies and electrochemical impedance spectroscopic measurements. These results provide valuable insights into the effects of copper addition in manganese oxide thin-film-based electrodes for energy storage applications. © 2023 The Authors. Published by American Chemical Society
Description
Keywords
Citation
ACS Omega, 2023, 8, 49, pp. 46640-46652
