Artificial intelligence application in drought assessment, monitoring and forecasting: a review

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media Deutschland GmbH

Abstract

Drought is a natural hazard creating havoc on economic, social and environmental aspects. As a result of its slow and creeping nature, it is problematic to establish the onset as well as the termination of drought. Irrespective of its spatial and temporal variability, drought occurs in almost all regions. A wide range of drought studies has been conducted by many researchers over a long period of time. The damage caused by drought has a huge impact on the social, economic and agricultural sectors. Researchers have defined drought in different ways depending upon the parameters and its characteristics, and universally there is no proper definition for drought because of its complexity in nature. This review is focused mainly on various Artificial Intelligence techniques used in drought assessment, monitoring, management and forecasting. The findings from the study shows that drought prediction has become significance in the field of hydrology, Water Resources Management, sustainable agriculture, etc. by using the various AI techniques. In recent studies, AI has been used widely in analysing drought in different regions. The applications of AI techniques in the domain of drought assessing, monitoring, forecasting, etc., shows a rapid growth and that the impact of these will be increasing in future. For understanding the different concepts of drought study, it is needed to establish different system of drought management in order to monitor the different factors affecting drought and then take proper measures to mitigate the damage. Literature studies have been done to analyze the onset and other measures of drought management. Future research may be oriented towards Modeling and probabilistic analysis of climatic data for refining the drought vulnerability mapping, analysis of onset and termination, warning system and drought declaration process depending on the conditions of the region. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Description

Keywords

Artificial intelligence techniques, Assessment, Drought, Forecasting, Management, Monitoring

Citation

Stochastic Environmental Research and Risk Assessment, 2022, Vol.36, 5, p. 1197-1214

Collections

Endorsement

Review

Supplemented By

Referenced By