Dynamic analysis of a porous wall fencing offshore fish cage subjected to regular waves

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

SAGE Publications Ltd

Abstract

Global aquaculture is in exponential trend to fulfil the demand for seafood due to the rise in world population. Most countries have implemented nearshore farming and reached their limits, which impacts water quality parameters. Offshore farming is the alternative option to counteract this nearshore farming issue and balance the aquaculture demand and supply. The present study construes on the numerical study of the porous wall fencing offshore fish cage subjected to regular waves. The numerical analysis is carried out for four cages by varying porous hole diameters from 0.5 to 0.7 m and without porosity. All the cages are placed at the same water depth of 200 m, interacting with a constant wave height of 6m with wave periods ranging from 6.92 to 19.05 s. Both frequency and time domain analysis are conducted to study the variation of hydrodynamic parameters, namely added mass, wave excitation forces, radiational potential damping, motion responses, and mooring line tension. Among all cage configurations, the cage with 0.5 m diameter porous hole fencing performs better for all wave conditions considered. Also, a scaled model of 1:75 was considered in both experimental and numerical studies for the purpose of validation. It is learnt that experimental parameters such as motion responses and mooring line tension are in good agreement. © IMechE 2023.

Description

Keywords

Aquaculture, Fish, Frequency domain analysis, Mooring, Mooring cables, Offshore oil well production, Time domain analysis, Water quality, ANSYS AQWA, Dynamics analysis, Experimental study, Mooring line tensions, Motion response, Nearshores, Offshore fish cage, Offshore fish farmings, Porous walls, Regular waves, Numerical methods

Citation

Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2024, 238, 1, pp. 171-185

Collections

Endorsement

Review

Supplemented By

Referenced By