Corrosion behavior of electrodeposited Zn-Ni, Zn-Co and Zn-Ni-Co alloys

No Thumbnail Available

Date

2011

Authors

Bhat, R.S.
Udaya, Bhat, K.
Chitharanjan, Hegde, A.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Zn-Ni, Zn-Co and Zn-Ni-Co alloy coatings were electrodeposited galvanostatically using sulphate bath, having THC as additive. The bath composition and operating parameters have been optimized by standard Hull cell method. The effects of current density (c.d.), pH on composition, thickness, hardness of the deposit were studied. Under all conditions of deposition, the bath followed anomalous type of codeposition with preferential deposition of less noble metal. Corrosion resistances of the coatings were measured by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) method showed that under optimal conditions, the corrosion resistance of Zn-Ni-Co alloy coatings is approximately 20 times and 18 times better than Zn-Ni and Zn-Co alloys of same thickness. The Zn-Ni-Co coating under optimal c.d. (3.0 A dm-2) was found due to its inherent high dielectric barrier, evidenced impedance signals. High partial c.d. for zinc in Zn-Ni-Co alloy system supports the possibility of a synergistic catalytic effect of Co on Fe and vice versa. X-ray diffraction study clearly indicates that improved corrosion resistance of ternary alloy is due to the change in the phase structure of the coatings, compared to binary alloys. Surface morphology and composition of the coatings were examined by using Scanning Electron Microscopy (SEM), interfaced with EDX facility, respectively. The ternary Zn-Ni-Co coating may thus replace the conventional Zn-Ni and Zn-Co coatings in a variety of applications. 2011 by CEE.

Description

Keywords

Citation

Analytical and Bioanalytical Electrochemistry, 2011, Vol.3, 3, pp.302-315

Endorsement

Review

Supplemented By

Referenced By