A Penman-Monteith evapotranspiration model with bulk surface conductance derived from remotely sensed spatial contextual information

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor and Francis Ltd. michael.wagreich@univie.ac.at

Abstract

A novel approach involving the use of the contextual information in a scatter plot of Moderate Resolution Imaging Spectrometer (MODIS) derived Land Surface Temperature versus Fraction of Vegetation (LST vs. F<inf>v</inf>) has been proposed in this study to obtain pixel-wise values of bulk surface conductance (G<inf>s</inf>) for use in the Penman-Monteith (PM) model for latent heat flux (?<inf>ET</inf>) estimation. Using a general expression for G<inf>s</inf> derived by assuming a two-source total ?<inf>ET</inf> (canopy transpiration plus soil evaporation) approach proposed by previous researchers, minimum and maximum values of G<inf>s</inf> for a given region can be inferred from a trapezoidal scatter plot of pixel-wise values of LST and corresponding F<inf>v</inf>. Using these as limiting values, G<inf>s</inf> values for each pixel can be derived through interpolation and subsequently used with the PM model to estimate ?<inf>ET</inf> for each pixel. The proposed methodology was implemented in 5 km × 5 km areas surrounding each of four flux towers located in tropical south-east Asia. Using climate data from the tower and derived G<inf>s</inf> values the PM model was used to obtain pixel-wise instantaneous ?<inf>ET</inf> values on six selected dates/times at each tower. Excellent comparisons were obtained between tower measured ?<inf>ET</inf> and those estimated by the proposed approach for all four flux tower locations (R2 = 0.85–0.96; RMSE = 18.27–33.79 W m–2). Since the LST- F<inf>v</inf> trapezoidal method is simple, calibration-free and easy to implement, the proposed methodology has the potential to provide accurate estimates of regional evapotranspiration with minimal data inputs. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.

Description

Keywords

Climate models, Heat flux, Land surface temperature, Pixels, Spectrometers, Towers, Transpiration, Canopy transpirations, Contextual information, Evapotranspiration modeling, General expression, Moderate resolution imaging spectrometers, Regional evapotranspiration, Soil evaporations, Trapezoidal methods, Evapotranspiration, evapotranspiration, land surface, latent heat flux, MODIS, numerical model, Penman-Monteith equation, pixel, remote sensing, surface temperature, Southeast Asia

Citation

International Journal of Remote Sensing, 2020, 41, 4, pp. 1486-1511

Collections

Endorsement

Review

Supplemented By

Referenced By