Enhanced permeation performance of cellulose acetate ultrafiltration membranes by incorporation of sulfonated poly(1,4-phenylene ether ether sulfone) and poly(styrene- Co -maleic anhydride)
No Thumbnail Available
Date
2014
Authors
Shenvi, S.
Ismail, A.F.
Isloor, A.M.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A cellulose acetate (CA)-based ultrafiltration membrane was prepared by incorporation of mechanically strong, sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES) to which hydrolyzed poly(styrene-co-maleic anhydride) (PSMA) was added as a novel additive. The preparation of SPEES was investigated in detail. SPEES having a degree of sulfonation of 21%, was more suitable for the blend. The chemical constitutions of SPEES, PSMA, and the blend membranes were confirmed by attenuated total reflectance fourier transform infrared spectroscopy. The scanning electron microscopy images revealed finger-like projections in the membrane structure. The performance of the membranes was analyzed on the basis of water content, porosity, flux, and antifouling studies. A membrane comprising 30% SPEES and 2% additive showed superior performance with flux and flux recovery ratio of 228 L/(m2 h) and 91%, respectively. It was concluded that the prepared membranes showed better performance in comparison with neat CA membranes. 2014 American Chemical Society.
Description
Keywords
Citation
Industrial and Engineering Chemistry Research, 2014, Vol.53, 35, pp.13820-13827